Name: \qquad

1. Match each function to one of the given graphs, and to one of the given contour diagrams. The plots are given in a separate handout.

$f(x, y)$	Graph	Contour Diagram
$x^{2}+\left(\frac{3 y}{2}\right)^{2}$		
$x^{2}-\frac{1}{2} y^{2}$		
$x+\frac{y}{2}$		
$-x+\frac{y}{2}$		
$\sin (\pi x)$		
$x y^{2}$		
$\sqrt{x^{2}+\left(\frac{3 y}{2}\right)^{2}}$		
x^{2}		

2. (a) Consider the function

$$
f(x, y)=x^{2}-y-x e^{y}-1
$$

Find a function $g(x, y, z)$ such that the graph of f is the level surface $g(x, y, z)=5$.

$$
g(x, y, z)=
$$

\qquad
(b) For each of the following functions, determine if the level surface $g(x, y, z)=0$ can be expressed as the graph of a function $f(x, y)$. If it is not possible, explain why not. If is it possible, find the function $f(x, y)$.
i. $g(x, y, z)=x^{2}+x+y^{4}+z(z-1)$
ii. $g(x, y, z)=\sin (z-y+2 x)$
iii. $g(x, y, z)=1-e^{x^{2}-y+z}$
3. Describe the level surfaces of the function $g(x, y, z)=x^{2}+4 y^{2}+z$.
4. Determine the points (if there are any) where the following functions are not continuous. Justify your answers.
(a) $f(x, y)=\frac{\sin (x+y)}{x-y}$
(b) $g(x, y)=\frac{1}{x^{2}+y^{2}+1}$
(c) $h(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0 \\ 0 & (x, y)=(0,0)\end{cases}$
1.

$f(x, y)$	Graph	Contour Diagram
$x^{2}+\left(\frac{3 y}{2}\right)^{2}$	\mathbf{C}	$\mathbf{8}$
$x^{2}-\frac{1}{2} y^{2}$	\mathbf{A}	$\mathbf{4}$
$x+\frac{y}{2}$	\mathbf{B}	$\mathbf{7}$
$-x+\frac{y}{2}$	\mathbf{F}	$\mathbf{5}$
$\sin (\pi x)$	\mathbf{H}	$\mathbf{1}$
$x y^{2}$	\mathbf{E}	$\mathbf{6}$
$\sqrt{x^{2}+\left(\frac{3 y}{2}\right)^{2}}$	\mathbf{G}	$\mathbf{2}$
x^{2}	D	$\mathbf{3}$

2. (a) The graph of f is given by

$$
z=x^{2}-y-x e^{y}-1,
$$

which we may rewrite as $x^{2}-y-x e^{y}-z-1=0$, or, by adding 5 to both sides,

$$
x^{2}-y-x e^{y}-z+4=5 .
$$

So we can choose

$$
g(x, y, z)=x^{2}-y-x e^{y}-z+4
$$

(b)
i. $g(x, y, z)=x^{2}+x+y^{4}+z(z-1)$

NO. If we try to solve $g(x, y, z)=0$ for z, we first find

$$
z^{2}-z+x^{2}+x+y^{4}=0
$$

and to solve this for z, we have to use the quadratic formula:

$$
z=\frac{1}{2}\left(1 \pm \sqrt{1-4\left(x^{2}+x+y^{4}\right)}\right)
$$

which means there will be two z values for each point (x, y) where the expression inside the square root is not negative. So we can not express the surface as the graph of a single function $f(x, y)$.
ii. $g(x, y, z)=\sin (z-y+2 x)$

NO. The level surface $g(x, y, z)=0$ is $\sin (z-y+2 x)=0$, which implies $z-y+2 x=n \pi$, where n is some integer. That is, the level set $g(x, y, z)=0$ consists of infinitely many planes of the form

$$
z=-2 x+y+n \pi .
$$

Since there is not a single function of x and y whose graph is this level set, the surface can not be expressed as the graph of a function $f(x, y)$.
iii. $g(x, y, z)=1-e^{x^{2}-y+z}$

YES. Solve for $z: ~ g(x, y, z)=0 \Longrightarrow 1-e^{x^{2}-y+z}=0 \Longrightarrow e^{x^{2}-y+z}=1$ $\Longrightarrow x^{2}-y+z=\ln (1)=0 \Longrightarrow z=y-x^{2}$. So the surface $g(x, y, z)=0$ is the graph of $f(x, y)=y-x^{2}$.
3. The level surfaces are given by $x^{2}+4 y^{2}+z=c$ for some constant c. We can rewrite this as $z=-x^{2}-4 y^{2}+c$. These surfaces are elliptical paraboloids that open downwards. (That is, they are "dome-shaped", with parabolas for crosssections, and ellipses for contour lines.) Each level surface has the same shape. The constant c gives the z intercept of each paraboloid.
4. (a) $f(x, y)=\frac{\sin (x+y)}{x-y}$

The numerator and denominator are both continuous, so the only points where the function would not be continuous are where the denominator is 0 . So this function is not continuous along the line $y=x$. (In fact, the function is not defined there.)
(b) $g(x, y)=\frac{1}{x^{2}+y^{2}+1}$

The numerator and denominator are both continuous, and the denominator is never 0 , so there are no points where this function is not continuous.
(c) $h(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & (x, y) \neq(0,0 \\ 0 & (x, y)=(0,0)\end{cases}$

For $(x, y) \neq(0,0)$, the function is a quotient of polynomials, and the denominator is not $\mathbf{0}$ if $(x, y) \neq(0,0)$, so the function is continuous for all $(x, y) \neq(0,0)$. To determine if the function is continuous at $(0,0)$, we must first determine if $\lim _{(x, y) \rightarrow(0,0)} h(x, y)$ exists. Let's check a few paths towards $(0,0)$. Along the x axis, we have $y=0$, and

$$
\lim _{x \rightarrow 0} h(x, 0)=\lim _{x \rightarrow 0} \frac{0}{x^{2}}=0
$$

Along the y axis, we have $x=0$, and we find the same limit, 0 . Let's try along the line $y=x$. Then

$$
\lim _{x \rightarrow 0} h(x, x)=\lim _{x \rightarrow 0} \frac{x^{2}}{2 x^{2}}=\lim _{x \rightarrow 0} \frac{1}{2}=\frac{1}{2}
$$

We see that the function approaches the value 0 along the x axis (and along the y axis), but approaches the value $1 / 2$ along the line $y=x$. Since the function approaches different values along two different paths to (0,0), the limit $\lim _{(x, y) \rightarrow(0,0)} h(x, y)$ does not exist. Therefore the function is not continuous at $(0,0)$.

