
Math 213 – Calculus III Practice Exam 2 Solutions Fall 2002

1. Let
g(x, y, z) = e−(x+y)2 + z2(x + y).

(a) What is the instantaneous rate of change of g at the point (2,−2, 1) in the direction of
the origin?

We want the directional derivative of g at (2,−2, 1) in the direction of the origin. A vector in
this direction is −2~i + 2~j − ~k, and a unit vector in this direction is ~u = 1√

9
(−2~i + 2~j − ~k) =(

−2
3
~i + 2

3
~j − 1

3
~k
)

. The gradient of g is

grad g(x, y, z) =
(
−2(x + y)e−(x+y)2 + z2

)
~i+

(
−2(x + y)e−(x+y)2 + z2

)
~j +(2z(x + y))~k,

and in particular
grad g(2,−2, 1) =~i +~j.

Then the instantaneous rate of change of g in the direction ~u at the point (2,−2, 1) is

g~u(2,−2, 1) = grad g(2,−2, 1) · ~u =
(
~i +~j

)
·
(
−2

3
~i +

2
3
~j − 1

3
~k

)
= 0.

(b) Suppose that a piece of fruit is sitting on a table in a room, and at each point (x, y, z)
in the space within the room, g(x, y, z) gives the strength of the odor of the fruit. Fur-
thermore, suppose that a certain bug always flies in the direction in which the fruit odor
increases fastest. Suppose also that the bug always flies with a speed of 2 feet/second.
What is the velocity vector of the bug when it is at the position (2,−2, 1)?

Since the bug flies in the direction in which the fruit odor increases fastest, it flies in the
direction of grad g. It always has a speed of 2, so the velocity vector at (2,−2, 1) is

2
grad g(2,−2, 1)
‖grad g(2,−2, 1)‖ =

2√
2
(~i +~j).

2. The path of a particle in space is given by the functions x(t) = 2t, y(t) = cos(t), and
z(t) = sin(t). Suppose the temperature in this space is given by a function H(x, y, z).

(a) Find dH
dt , the rate of change of the temperature at the particle’s position. (Since the

actual function H(x, y, z) is not given, your answer will be in terms of derivatives of H.)
dH
dt = ∂H

∂x
dx
dt + ∂H

∂y
dy
dt + ∂H

∂z
dz
dt = 2∂H

∂x − sin t∂H
∂y + cos t∂H

∂z

(b) Suppose we know that at all points, ∂H
∂x > 0, ∂H

∂y < 0 and ∂H
∂z > 0. At t = 0, is dH

dt
positive, zero, or negative?

At t = 0, dH
dt = 2∂H

∂x + ∂H
∂z > 0.
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3. Let
f(x, y) = x3 − xy + cos(π(x + y)).

(a) Find a vector normal to the level curve f(x, y) = 1 at the point where x = 1, y = 1.

The gradient of f is normal to the level curve at each point. We find
grad f(x, y) = (3x2 − y − π sin(π(x + y)))~i + (−x− π sin(π(x + y)))~j, and
grad f(1, 1) = 2~i−~j.

(b) Find the equation of the line tangent to the level curve f(x, y) = 1 at the point where
x = 1, y = 1.
The line is

2(x− 1)− (y − 1) = 0, or 2x− y = 1.

(c) Find a vector normal to the graph z = f(x, y) at the point x = 1, y = 1.

The graph is the level surface g(x, y, z) = 0 of the function g(x, y, z) = f(x, y)−z. The gradi-
ent of g is normal to the level surface at each point. We have grad g(x, y, z) = grad f(x, y)−~k.
Now f(1, 1) = 1, so a vector normal to the graph at (1, 1, 1) is

grad g(1, 1, 1) = grad f(1, 1)− ~k = 2~i−~j − ~k.

(d) Find the equation of the plane tangent to the graph z = f(x, y) at the point x = 1,
y = 1.

The plane is 2(x− 1)− (y − 1)− (z − 1) = 0, or 2x− y − z = 0.

4. Let
f(x, y) = (x− y)3 + 2xy + x2 − y.

(a) Find the linear approximation L(x, y) near the point (1, 2).

First get the numbers: f(1, 2) = −1 + 4 + 1− 2 = 2,
fx(x, y) = 3(x− y)2 + 2y + 2x, fx(1, 2) = 3 + 4 + 2 = 9,
fy(x, y) = −3(x− y)2 + 2x− 1, fy(1, 2) = −3 + 2− 1 = −2.
Then L(x, y) = f(1, 2) + fx(1, 2)(x− 1) + fy(1, 2)(y − 2) = 2 + 9(x− 1)− 2(y − 2).

(b) Find the quadratic approximation Q(x, y) near the point (1, 2).

We need some more numbers:
fxx(x, y) = 6(x− y) + 2, fxx(1, 2) = −6 + 2 = −4,
fxy(x, y) = −6(x− y) + 2, fxy(1, 2) = 6 + 2 = 8,
fyy(x, y) = 6(x− y), fxy(1, 2) = −6.
Then

Q(x, y) = L(x, y) +
fxx(1, 2)

2
(x− 1)2 + fxy(1, 2)(x− 1)(y − 2) +

fyy(1, 2)
2

(y − 2)2

= 2 + 9(x− 1)− 2(y − 2)− 2(x− 1)2 + 8(x− 1)(y − 2)− 3(y − 2)2.
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5. For each of the following functions, determine the set of points where the function is not
differentiable. Briefly explain how you know it is not differentiable; use a picture if it helps.

(You do not have to prove that it is not differentiable; just identify the set of points based on
your understanding of what differentiable means.)

(a) f(x, y) =
∣∣x2 + y2 − 1

∣∣
This function is not differentiable on the circle x2 + y2 = 1. The graph has a “corner” at
these points.

(b) f(x, y) = (x2 + y2)1/4

This function is not differentiable at the origin. Consider the cross section y = 0: f(x, 0) =
(x2)1/4 =

√
|x|. The graph has a cusp (i.e. a point) at x = 0.

(c) f(x, y) = e−x2+y

This function is the composition of polynomials and the exponential function, so it is differ-
entiable everywhere.

(d) f(x, y) =
x3 − xy + 1

x2 − y2

This function is not differentiable at points where the denominator is zero; that is, where
x2 = y2. This gives the lines y = x and y = −x.

6. An assortment of TRUE/FALSE or short answer questions:

(a) TRUE or FALSE: If f is differentiable at (0, 0), then f is continuous at (0, 0).
TRUE. See the middle box on page 692.

(b) TRUE or FALSE: If f is a continuous function defined on the region x2 + y2 ≤ 9, then
f has a maximum value and a minimum value in this region.
TRUE. Since f is continuous, and the region is closed and bounded, Theorem 15.1 (the
Extreme Value Theorem, page 716) shows that f has a global maximum and a global minimum
in the region.

(c) TRUE or FALSE: If fx(0, 0) exists, and fy(0, 0) exists, then f is differentiable at (0, 0).

FALSE. f(x, y) = x1/3y1/3 is a counter-example (see Example 3, page 691, or your notes).

(d) TRUE or FALSE: If f is differentiable at (0, 0), then the tangent plane to the graph of
f at (0, 0) is given by z = f(0, 0) + fx(0, 0)x + fy(0, 0)y.

TRUE. See Example 1, page 690, and the comment just above Example 1.

(e) Give an example of a function f(x, y) for which (0, 0) is a local minimum, but for which
the second derivative test fails to determine this classification.
f(x, y) = x4 + y4 (see Example 7, page 708, or your notes).

(f) Give an example of a function g(x, y) which is differentiable everywhere except along
the line y = x.
g(x, y) = |x − y|. The graph consists of two planes (z = x − y if x ≥ y, and z = y − x if
x < y) that meet in a corner along y = x.
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(g) Let H(x, y) = x2 − y2 + xy, and suppose that x and y are both functions that depend

on t. Express
dH

dt
in terms of x, y, dx

dt and dy
dt .

dH
dt = ∂H

∂x
dx
dt + ∂H

∂y
dy
dt = (2x + y)dx

dt + (−2y + x)dy
dt

7. Suppose f is a differentiable function such that

f(1, 3) = 1, fx(1, 3) = 2, fy(1, 3) = 4,

fxx(1, 3) = 2, fxy(1, 3) = −1, and fyy(1, 3) = 4.

(a) Find gradf(1, 3).

gradf(1, 3) = fx(1, 3)~i + fy(1, 3)~j = 2~i + 4~j

(b) Find a vector in the plane that is perpendicular to the contour line f(x, y) = 1 at the
point (1, 3).

2~i + 4~i (from (a); the gradient vector at a point is perpendicular to the contour line through
that point)

(c) Find a vector that is perpendicular to the surface z = f(x, y) (i.e. the graph of f) at
the point (1, 3, 1).

The graph is the level surface g(x, y, z) = 0 of the function g(x, y, z) = f(x, y)−z. The gradi-
ent of g is normal to the level surface at each point. We have grad g(x, y, z) = grad f(x, y)−~k.
Now f(1, 3) = 1, so a vector normal to the graph at (1, 3, 1) is

grad g(1, 3, 1) = grad f(1, 3)− ~k = 2~i + 4~j − ~k.

(d) At the point (1, 3), what is the rate of change of f in the direction ~i +~j?

~u = (~i + ~j)/
√

2 is a unit vector in the direction of ~i + ~j. The rate of change of f in this
direction is f~u(1, 3) = gradf(1, 3) · ~u = (2~i + 4~j) · (~i +~j)/

√
2 = 6/

√
2 = 3

√
2.

(e) Use a quadratic approximation to estimate f(1.2, 3.3).

Near (1, 3), we have

f(x, y) ≈ f(1, 3)+fx(1, 3)(x− 1) + fy(1, 3)(y − 3)+
fxx(1, 3)

2
(x− 1)2 + fxy(1, 3)(x− 1)(y − 3) +

fyy(1, 3)
2

(y − 3)2.

So f(1.2, 3.3) ≈ 1 + (2)(0.2) + (4)(0.3) + (2/2)(0.2)2 + (−1)(0.2)(0.3) + (4/2)(0.3)2 = 2.76.
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8. For each of the following functions, find and classify the critical points.

(a) f(x, y) = x3 − x2 + 2xy + 2y2

fx(x, y) = 3x2 − 2x + 2y and fy(x, y) = 2x + 4y. We must solve (i) 3x2 − 2x + 2y = 0 and
(ii) 2x + 4y = 0. (ii) gives us y = −x/2, and substituting this into (i) gives 3x2 − 3x = 0.
This gives x = 0 or x = 1. If x = 0 then y = 0, and if x = 1 then y = −1/2. So the critical
points are (0, 0) and (1,−1/2).

For the second derivative test, we need fxx(x, y) = 6x− 2, fxy(x, y) = 2, and fyy(x, y) = 4.

At (0, 0), D = fxx(0, 0)fyy(0, 0)− fxy(0, 0)2 = (−2)(4)− 22 = −12 < 0, so (0, 0) is a saddle
point.

At (1,−1/2), D = fxx(1,−1/2)fyy(1,−1/2) − fxy(1,−1/2)2 = (4)(4) − 22 = 12 > 0, and
fxx(1,−1/2) = 4 > 0, so (1,−1/2) is a local minimum.

(b) g(x, y) =
√

(x− 1)2 + y2

gx(x, y) = x−1√
(x−1)2+y2

, and gy(x, y) = y√
(x−1)2+y2

. Note that the denominators are zero

when x = 1 and y = 0. Therefore gx and gy are not defined there, so (1, 0) is a critical point.
Solving gx = 0 and gy = 0 does not give any more points, so the only critical point is (1, 0).

This function is not differentiable at (1, 0), so we can not use the second derivative test.
However, we recognize the shape of the graph: it is a cone, and the point of the cone is at
(1, 0). (See, for example, Example 4 on page 578; the cone in this problem has been shifted
to (1, 0).) Therefore (1, 0) is a local (and global) minimum.

(c) h(x, y) = e−x+y + x + y2

hx(x, y) = −e−x+y +1, and hy(x, y) = e−x+y +2y. To find the critical points, we must solve
(i) −e−x+y + 1 = 0 and (ii) e−x+y + 2y = 0. First (i) gives us e−x+y = 1, which implies
−x + y = 0, so y = x. Substitute this into (ii) to get 1 + 2y = 0, and therefore y = −1/2.
So the only critical point is (−1/2,−1/2).

We need hxx(x, y) = e−x+y, hxy(x, y) = −e−x+y, and hyy(x, y) = e−x+y + 2.

At (−1/2,−1/2), we have D = hxx(−1/2,−1/2)hyy(−1/2,−1/2) − hxy(−1/2,−1/2)2 =
(1)(3)− (−1)2 = 2 > 0, and hxx(−1/2,−1/2) = 1 > 0, so (−1/2,−1/2) is a local minimum.
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(d) r(x, y) = (x− y)(x + y)x (Hint: Consider the contour lines r(x, y) = 0.)

Let’s ignore the hint for the moment. Let’s rewrite r(x, y) = x3 − xy2. We have rx(x, y) =
3x2 − y2 and ry(x, y) = −2xy. We must solve (i) 3x2 − y2 = 0 and (ii) −2xy = 0. But (ii)
implies that either x = 0 or y = 0. If x = 0, then (i) implies y = 0. On the other hand, if
y = 0, then (i) implies x = 0. Thus the only critical point is (0, 0).

We need rxx(x, y) = 6x, rxy(x, y) = −2y, and ryy(x, y) = −2x.

At (0, 0), we have D = rxx(0, 0)ryy(0, 0)− rxy(0, 0)2 = 0. So the second derivative test does
not tell us the shape of the graph near (0, 0).

Now let’s use the hint. Consider the contour lines given by r(x, y) = 0. This is the set of
points where (x−y)(x+y)x = 0. This is three lines through the point (0, 0): y = x, y = −x,
and x = 0. Since these are the lines where r = 0, they are the boundaries of the regions where
r > 0 and r < 0. Since the three lines all go through (0, 0), they separate the plane into six
wedge-shaped regions, and the sign of r alternates from region to region (i.e. there are three
regions where r > 0 and three regions where r < 0). In other words, the shape of the graph
is a monkey saddle.

6


