1. Let V be the vector space of functions spanned by $S=\{\cos (t), \sin (t), \cos (2 t), \sin (2 t)\}$.

Let $L: V \rightarrow V$ be defined as $L(f(t))=f^{\prime}(t)$. (L is the differentiation operator.)
(a) Find the matrix representation of L with respect to S.

Solution:

$$
\begin{gathered}
L(\cos (t))=-\sin (t), \\
L(\sin (t))=\cos (t), \\
L(\cos (2 t))=-2 \sin (2 t), \\
L(\sin (2 t))=2 \cos (2 t),
\end{gathered}
$$

and by inspection,

$$
\begin{aligned}
& {[L(\cos (t))]_{S}=\left[\begin{array}{c}
0 \\
-1 \\
0 \\
0
\end{array}\right], \quad[L(\sin (t))]_{S}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right],} \\
& {[L(\cos (2 t))]_{S}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2
\end{array}\right], \quad[L(\sin (2 t))]_{S}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right]}
\end{aligned}
$$

The matrix representation of L with respect to S is

$$
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 \\
0 & 0 & -2 & 0
\end{array}\right]
$$

(b) Is L an isomorphism?

Solution:

Yes. L is linear; we must show that L is one-to-one and onto. We can do this by showing that A is nonsingular. We can do this by observing that A is row-equivalent to the identity matrix, or by actually finding the inverse, which is

$$
A^{-1}=\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 / 2 \\
0 & 0 & 1 / 2 & 0
\end{array}\right]
$$

2. Find the area of the triangle in the plane formed by the points $(1,1),(3,2)$ and $(7,6)$.

Solution:

There are (at least) two ways to answer this question. Here is one:
The displacement vector from $(1,1)$ to $(3,2)$ is $\overrightarrow{\mathbf{v}}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. The displacement vector from $(1,1)$ to $(7,6)$ is $\overrightarrow{\mathbf{w}}=\left[\begin{array}{l}6 \\ 5\end{array}\right]$. Put these vectors in a matrix, and take the determinant to find the area of the parallelogram formed by the vectors:

$$
A=\left[\begin{array}{ll}
2 & 6 \\
1 & 5
\end{array}\right], \quad \operatorname{det}(A)=4
$$

The triangle is half of the parallelogram, so the area of the triangle is $\mathbf{2}$.
(Another method is given on pages 376-378 of the text.)
3. Find the values of λ where the following matrix is singular.

$$
A=\left[\begin{array}{ccc}
\lambda-1 & 2 & 3 \\
0 & \lambda & 0 \\
-1 & -3 & \lambda-5
\end{array}\right]
$$

Solution:

The matrix is singular if the determinant is zero. By using a cofactor expansion down the first column, we find

$$
\begin{aligned}
\operatorname{det}(A) & =(\lambda-1)(\lambda(\lambda-5))-(-3 \lambda) \\
& =\lambda\left(\lambda^{2}-6 \lambda+8\right) \\
& =\lambda(\lambda-2)(\lambda-4)
\end{aligned}
$$

This is zero (and therefore the matrix is singular) when $\lambda=0, \lambda=2$ or $\lambda=4$.
4. This problem contains assorted short answer or true/false questions.

In all cases, A and B are $n \times n$ matrices.
Briefly explain or justify your answers.
(a) $\operatorname{Suppose} \operatorname{det}(A)=r$. Find $\operatorname{det}(c A)$, where c is a number.

Solution:

If we multiplied one column (or row) of A by c, the determinant would change by the factor c. In this case, we are multiplying each column (or row) by c, and there are n columns, so

$$
\operatorname{det}(c A)=c^{n} \operatorname{det}(A)=c^{n} r
$$

OR:

$$
\operatorname{det}(c A)=\operatorname{det}(c I A)=\operatorname{det}(c I) \operatorname{det}(A),
$$

and $\operatorname{det}(c I)=c^{n}$, so again we find

$$
\operatorname{det}(c A)=c^{n} r .
$$

(b) Suppose A is a nonsingular matrix. Show that $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.

Solution:

We have

$$
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right)=\operatorname{det}\left(A A^{-1}\right)=\operatorname{det}(I)=1
$$

therefore

$$
\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}
$$

(c) True or False: $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$.

False.
Here is a counterexample: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. Then $\operatorname{det}(A)=0$ and $\operatorname{det}(B)=0$, but $\operatorname{det}(A+B)=\operatorname{det}(I)=1$.
(d) True or False: $\operatorname{det}\left(A^{2}\right)=(\operatorname{det}(A))^{2}$.

True.

$$
\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A A)=\operatorname{det}(A) \operatorname{det}(A)=(\operatorname{det}(A))^{2} .
$$

(e) True or False: If A is row equivalent to B, then $\operatorname{det}(A)=\operatorname{det}(B)$.

False.
Here is a counterexample. $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, and $B=I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] . A$ is row equivalent to I, but $\operatorname{det}(A)=4$ and $\operatorname{det}(B)=1$.

