Homework 3

Due Friday, October 21

Some of the following definitions are new; some are slight variations of a definitions we've already seen; and some are just convenient reminders.

Definition. In a metric space X with metric d, the triangle inequality says

$$d(x,z) \le d(x,y) + d(y,z)$$

for $x, y, z \in X$.

Definition. Let f be a mapping that is not necessarily invertible. We define $f^{-1}(p)$ to be all the points $y \in X$ for which f(y) = p. Similarly, if U is a subset of X, we define $f^{-1}(U)$ to be all the points $y \in X$ for which $f(y) \in U$. For example, if $f(x) = x^2$, then $f^{-1}(4) = \{-2, 2\}$. Also, if U is the open interval (1, 9), then $f^{-1}(U) = (-3, -1) \cup (1, 3)$.

Definition. Let $f: X \to Y$. f is continuous at p if, for any sequence $\{p_i\}_{i=0}^{\infty}$ with $\lim_{i\to\infty} p_i = \overline{p}$, we have $\lim_{i\to\infty} f(p_i) = f(\overline{p})$.

Definition. Recall that for a point p in the real line, $N_{\delta}(p) = \{x \in J \mid p - \delta < x < p + \delta\}$. In the more general setting of a metric space X with metric d,

$$N_{\delta}(p) = \{ x \in X \mid d(p, x) < \delta \}.$$

Note that $N_{\delta}(p)$ is an open set.

Definition. The distance between two *sets* is defined to be minimum of the distances between any point in the first set and any point in the second.

- 1. Suppose $f: X \to Y$ is a continuous function from X to Y. Let U be an open subset of Y. Show that $f^{-1}(U)$ is an open subset of X. (In words, the inverse images of open sets are open.)
- 2. Show that, for any $w, x, y, z \in X$,

$$d(w, z) \le d(w, x) + d(x, y) + d(y, z)$$
(1)

which implies

$$d(w, x) \ge d(w, z) - d(x, y) - d(y, z).$$
(2)

Make a sketch that illustrates the inequality (1). (The text focuses on subsets of the real line, but a diagram in the plane will probably be clearer.) Hint: This is just a variation of the triangle inequality.

- 3. Suppose that $d(x, z) > 2\delta$ for some constant $\delta > 0$. Show that for any $y \in X$, either $d(x, y) > \delta$ or $d(z, y) > \delta$. (That is not an *exclusive* or; both d(x, y) and d(z, y) could be greater than δ .) The question asks you to show that at least one of them *must* be greater than δ .)
- 4. Let $q \in X$, and let n > 0 be some integer. Let

$$V = \bigcap_{i=0}^{n} f^{-i} \left(N_{\delta} \left(f^{i}(q) \right) \right).$$
(3)

Describe the set V. What do the points in this set have in common?

Hint: The first term in the intersection (i = 0) is simply $N_{\delta}(q)$. Now, $N_{\delta}(f(q))$ is a neighborhood of f(q), and the second term in the intersection is $f^{-1}(N_{\delta}(f(q)))$. What does the intersection of this term and $N_{\delta}(q)$ give? Generalize to the intersection of the n + 1 terms.

This problem is just asking you to carefully parse and explain the meaning of the set defined in equation (3).

5. To prove that a map $f: X \to X$ has sensitive dependence on initial conditions, we must show that there is a $\delta > 0$ such that, for every $x \in X$, every neighborhood W of x contains a point z such that

$$d(f^m(x), f^m(z)) > \delta \tag{4}$$

for some integer $m \ge 0$. (I've used the distance function d here; on the real line, this would be $|f^m(x) - f^m(z)| > \delta$.)

Suppose that the continuous map $f: X \to X$ is topologically transitive and has a dense set of periodic orbits. In this problem, you will show that f must also have sensitive dependence on initial conditions. To do this, you will develop the proof in a sequence of steps. (Since the problem is a bit wordy, I've highlighted in blue the parts that you must complete.)

(a) Show that there is a number ρ such that for all $x \in X$, there exists a periodic point $q \in X$ whose orbit $O^+(q)$ is of distance at least $\rho/2$ from x. (In other words, the distance from x to each point in the orbit of q is at least $\rho/2$.)

Hint: Choose two arbitrary periodic points q_1 and q_2 with disjoint orbits $O^+(q_1)$ and $O^+(q_2)$. Let ρ be the distance between $O^+(q_1)$ and $O^+(q_2)$.

- (b) Let $x \in X$ be an arbitrary point in X, let W be some neighborhood of x. Let $\delta = \rho/8$, where ρ is the number from part (a). Let $U = W \cap N_{\delta}(x)$. Briefly explain why U must contain a periodic point p.
- (c) Let n be the period of the periodic point p of part (b). Let q be a periodic point whose orbit is of distance at least 4δ away from x. (See the figure below. That such an orbit exists was shown in part (a), since $4\delta = \rho/2$.) Let V be the set defined in equation (3) of question 4. V is open (by the result of question 1), and V is non-empty (it contains q). Because f is topologically transitive, there exists $y \in U$ and positive integer k such that $f^k(y) \in V$.

(At this point, we have a period-n point $p \in U$, and a point $y \in U$ whose orbit enters V in k iterations. See the figure below for an illustration.)

During the iterations from i = 0 to i = k, $f^{i}(y)$ is on its way to V, while $f^{i}(p)$ is iterating around a periodic orbit. After each n iterations, this periodic orbit returns to p:

$$f^{nj}(p) = p$$

for any integer $j \ge 0$. Let j be the first integer such that $nj \ge k$. Show that $f^{nj}(y) \in N_{\delta}(f^{nj-k}(q))$.

- (d) Show that $d(p, f^{nj}(y)) > 2\delta$. Hint: The figure below might help you "see" what is going on. To write the proof, you might use the result in question 2, applied to the points p, $f^{nj}(y)$, $f^{nj-k}(q)$, and x.
- (e) Finish the proof by applying the result of question 3 to the previous step. Which point(s) correspond to z in the equation (4), and what is the value of m? Hint: Recall that $f^{nj}(p) = p$, so the previous step showed that $d(f^{nj}(p), f^{nj}(y)) > 2\delta$. Use the triangle inequality on p, $f^{nj}(y)$, and $f^{nj}(x)$.

The figure below is an attempt to illustrate some of the definitions in the proof.

