Homework 3

Due Friday, October 21

Some of the following definitions are new; some are slight variations of a definitions we've already seen; and some are just convenient reminders.

Definition. In a metric space X with metric d, the triangle inequality says

$$
d(x, z) \leq d(x, y)+d(y, z)
$$

for $x, y, z \in X$.
Definition. Let f be a mapping that is not necessarily invertible. We define $f^{-1}(p)$ to be all the points $y \in X$ for which $f(y)=p$. Similarly, if U is a subset of X, we define $f^{-1}(U)$ to be all the points $y \in X$ for which $f(y) \in U$. For example, if $f(x)=x^{2}$, then $f^{-1}(4)=\{-2,2\}$. Also, if U is the open interval $(1,9)$, then $f^{-1}(U)=(-3,-1) \cup(1,3)$.

Definition. Let $f: X \rightarrow Y . f$ is continuous at p if, for any sequence $\left\{p_{i}\right\}_{i=0}^{\infty}$ with $\lim _{i \rightarrow \infty} p_{i}=\bar{p}$, we have $\lim _{i \rightarrow \infty} f\left(p_{i}\right)=f(\bar{p})$.

Definition. Recall that for a point p in the real line, $N_{\delta}(p)=\{x \in J \mid p-\delta<x<p+\delta\}$. In the more general setting of a metric space X with metric d,

$$
N_{\delta}(p)=\{x \in X \mid d(p, x)<\delta\} .
$$

Note that $N_{\delta}(p)$ is an open set.
Definition. The distance between two sets is defined to be minimum of the distances between any point in the first set and any point in the second.

1. Suppose $f: X \rightarrow Y$ is a continuous function from X to Y.

Let U be an open subset of Y. Show that $f^{-1}(U)$ is an open subset of X. (In words, the inverse images of open sets are open.)
2. Show that, for any $w, x, y, z \in X$,

$$
\begin{equation*}
d(w, z) \leq d(w, x)+d(x, y)+d(y, z) \tag{1}
\end{equation*}
$$

which implies

$$
\begin{equation*}
d(w, x) \geq d(w, z)-d(x, y)-d(y, z) . \tag{2}
\end{equation*}
$$

Make a sketch that illustrates the inequality (1). (The text focuses on subsets of the real line, but a diagram in the plane will probably be clearer.) Hint: This is just a variation of the triangle inequality.
3. Suppose that $d(x, z)>2 \delta$ for some constant $\delta>0$. Show that for any $y \in X$, either $d(x, y)>\delta$ or $d(z, y)>\delta$. (That is not an exclusive or; both $d(x, y)$ and $d(z, y)$ could be greater than δ. The question asks you to show that at least one of them must be greater than δ.)
4. Let $q \in X$, and let $n>0$ be some integer. Let

$$
\begin{equation*}
V=\bigcap_{i=0}^{n} f^{-i}\left(N_{\delta}\left(f^{i}(q)\right)\right) . \tag{3}
\end{equation*}
$$

Describe the set V. What do the points in this set have in common?
Hint: The first term in the intersection $(i=0)$ is simply $N_{\delta}(q)$. Now, $N_{\delta}(f(q))$ is a neighborhood of $f(q)$, and the second term in the intersection is $f^{-1}\left(N_{\delta}(f(q))\right)$. What does the intersection of this term and $N_{\delta}(q)$ give? Generalize to the intersection of the $n+1$ terms.
This problem is just asking you to carefully parse and explain the meaning of the set defined in equation (3).
5. To prove that a map $f: X \rightarrow X$ has sensitive dependence on initial conditions, we must show that there is a $\delta>0$ such that, for every $x \in X$, every neighborhood W of x contains a point z such that

$$
\begin{equation*}
d\left(f^{m}(x), f^{m}(z)\right)>\delta \tag{4}
\end{equation*}
$$

for some integer $m \geq 0$. (I've used the distance function d here; on the real line, this would be $\left|f^{m}(x)-f^{m}(z)\right|>\delta$.)
Suppose that the continuous map $f: X \rightarrow X$ is topologically transitive and has a dense set of periodic orbits. In this problem, you will show that f must also have sensitive dependence on initial conditions. To do this, you will develop the proof in a sequence of steps. (Since the problem is a bit wordy, I've highlighted in blue the parts that you must complete.)
(a) Show that there is a number ρ such that for all $x \in X$, there exists a periodic point $q \in X$ whose orbit $O^{+}(q)$ is of distance at least $\rho / 2$ from x. (In other words, the distance from x to each point in the orbit of q is at least $\rho / 2$.)
Hint: Choose two arbitrary periodic points q_{1} and q_{2} with disjoint orbits $O^{+}\left(q_{1}\right)$ and $O^{+}\left(q_{2}\right)$. Let ρ be the distance between $O^{+}\left(q_{1}\right)$ and $O^{+}\left(q_{2}\right)$.
(b) Let $x \in X$ be an arbitrary point in X, let W be some neighborhood of x. Let $\delta=\rho / 8$, where ρ is the number from part (a). Let $U=W \cap N_{\delta}(x)$.
Briefly explain why U must contain a periodic point p.
(c) Let n be the period of the periodic point p of part (b). Let q be a periodic point whose orbit is of distance at least 4δ away from x. (See the figure below. That such an orbit exists was shown in part (a), since $4 \delta=\rho / 2$.) Let V be the set defined in equation (3) of question $4 . V$ is open (by the result of question 1), and V is non-empty (it contains $q)$. Because f is topologically transitive, there exists $y \in U$ and positive integer k such that $f^{k}(y) \in V$.
(At this point, we have a period-n point $p \in U$, and a point $y \in U$ whose orbit enters V in k iterations. See the figure below for an illustration.)

During the iterations from $i=0$ to $i=k, f^{i}(y)$ is on its way to V, while $f^{i}(p)$ is iterating around a periodic orbit. After each n iterations, this periodic orbit returns to p :

$$
f^{n j}(p)=p
$$

for any integer $j \geq 0$. Let j be the first integer such that $n j \geq k$.
Show that $f^{n j}(y) \in N_{\delta}\left(f^{n j-k}(q)\right)$.
(d) Show that $d\left(p, f^{n j}(y)\right)>2 \delta$. Hint: The figure below might help you "see" what is going on. To write the proof, you might use the result in question 2, applied to the points p, $f^{n j}(y), f^{n j-k}(q)$, and x.
(e) Finish the proof by applying the result of question 3 to the previous step. Which point(s) correspond to z in the equation (4), and what is the value of m ? Hint: Recall that $f^{n j}(p)=p$, so the previous step showed that $d\left(f^{n j}(p), f^{n j}(y)\right)>2 \delta$. Use the triangle inequality on $p, f^{n j}(y)$, and $f^{n j}(x)$.

The figure below is an attempt to illustrate some of the definitions in the proof.

