Exercise T1.5.

Define the map f.
$>\mathrm{f}:=\mathrm{x} \rightarrow 2 * \mathrm{x}^{\wedge} 2-5 * \mathrm{x}$;

$$
f:=x \rightarrow 2 x^{2}-5 x
$$

Find fixed points.
> solve ($\mathrm{f}(\mathrm{x})=\mathrm{x}, \mathrm{x}$);

$$
0,3
$$

Define a function for the second iterate of f .
> f 2 := x -> $\mathrm{f}(\mathrm{f}(\mathrm{x}))$;

$$
f 2:=x \rightarrow \mathrm{f}(\mathrm{f}(x))
$$

Note that $\mathrm{f}^{\wedge} 2(\mathrm{x})$ is a degree 4 polynomial.
> $\mathrm{f} 2(\mathrm{x})$;

$$
2\left(2 x^{2}-5 x\right)^{2}-10 x^{2}+25 x
$$

Find the fixed points of f 2.
> solve (f2 (x) =x, x);

$$
0,3,1+\sqrt{2}, 1-\sqrt{2}
$$

We get four fixed points for f 2 , but two of them are also fixed points of f . The new points are $1+$ sqrt(2) and $1-\mathrm{sqrt}(2)$. These are the period 2 points.

Let's check:
> x0 := 1+sqrt(2);

$$
x 0:=1+\sqrt{2}
$$

> x 1 := $\mathrm{f}(\mathrm{x} 0)$;

$$
x l:=2(1+\sqrt{2})^{2}-5-5 \sqrt{2}
$$

> x1 := simplify(f(x0));

$$
x l:=1-\sqrt{2}
$$

x 2 is $\mathrm{f}(\mathrm{f}(\mathrm{x} 0))$):
> x2 := simplify (f(x1));

$$
x 2:=1+\sqrt{2}
$$

We see that $\mathrm{f}(\mathrm{f}(\mathrm{x} 0))=\mathrm{x} 0$, x 0 and x 1 are period 2 points.
> id := x \rightarrow x;

$$
i d:=x \rightarrow x
$$

p2data : $=[[x 1, x 2],[x 2, x 2],[x 2, x 1],[x 1, x 1],[x 1, x 2]]$;
p2data :=
$[[1-\sqrt{2}, 1+\sqrt{2}],[1+\sqrt{2}, 1+\sqrt{2}],[1+\sqrt{2}, 1-\sqrt{2}],[1-\sqrt{2}, 1-\sqrt{2}],[1-\sqrt{2}, 1+\sqrt{2}]]$
> plot(\{id,f,p2data\},-0.6..3.1,scaling=constrained,color=black,thick ness=2);

[The above plot includes the graph of f . The box shows the period- 2 orbit. [>

