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1 The Periodically Forced Harmonic Oscillator.

By periodically forced harmonic oscillator, we mean the linear second order nonhomogeneous dif-
ferential equation

my′′ + by′ + ky = F cos(ωt) (1)

where m > 0, b ≥ 0, and k > 0. We can solve this problem completely; the goal of these notes is
to study the behavior of the solutions, and to point out some special cases.

The parameter b is the damping coefficient (also known as the coefficient of friction).
We consider the cases b = 0 (undamped) and b > 0 (damped) separately.

2 Undamped (b = 0).

When b = 0, we have the equation

my′′ + ky = F cos(ωt). (2)

For convenience, define

ω0 =

√
k

m
.

This is the “natural frequency” of the undamped, unforced harmonic oscillator. To solve (2), we
must consider two cases: ω 6= ω0 and ω = ω0.

2.1 ω 6= ω0

By using the method of undetermined coefficients, we find the solution of (2) to be

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

m(ω2 − ω2
0)

cos(ωt), (3)

where, as usual, c1 and c2 are arbitrary constants.
Note that the amplitude of yp becomes larger as ω approaches ω0. This suggests that something

other than a purely sinusoidal function may result when ω = ω0.
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Figure 1: Solutions to (2) for several values of ω. The initial conditions are y(0) = 0 and y′(0) = 0.
The solid curves are the actual solutions, while the dashed lines show the envelope (or modulation)
of the amplitude.

Beats. Let us consider the initial conditions y(0) = 0 and y′(0) = 0. We must have c1 =
−F/(m(ω2 − ω2

0)) and c2 = 0, which gives

y(t) =
F

m(ω2 − ω2
0)

(cos(ωt)− cos(ω0t)).

in (3). By using some trigonometric identities, we may rewrite this as

y(t) =
2F

m(ω2
0 − ω2)

sin
(

(ω0 + ω)t
2

)
sin

(
(ω0 − ω)t

2

)
. (4)

Now, if ω ≈ ω0, we can think of this expression as the product of

sin
(

(ω0 + ω)t
2

)
and

2F

m(ω2
0 − ω2)

sin
(

(ω0 − ω)t
2

)
.

Since ω ≈ ω0, |ω0 − ω| is small, the first expression has a much higher frequency than the second.
We see that the solution given in (4) is a “high” frequency oscillation, with an amplitude that
is modulated by a low frequency oscillation. In Figure 1, we consider an example where F = 1,
m = 1, and ω0 = 3. In the first three graphs, the solid lines are y(t) given by (4), and the dashed
lines show the envelope or modulation of the amplitude of the solution. Note that the vertical scale
is different in each graph: the amplitude increases as ω approaches ω0.

Remember that the solutions in Figure 1 are for the special initial conditions y(0) = 0 and
y′(0) = 0. Beats occur with other initial conditions, but the function that modulates the amplitude
of the high frequency oscillation will not be a simple sine function. Figure 2 shows a solution to
(2) with ω0 = 3.5, but with y(0) = 1 and y′(0) = −2.
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Figure 2: Solution to (2) for ω = 3.5, with the initial conditions y(0) = 1 and y′(0) = −2.

2.2 ω = ω0: Resonance

When ω = ω0 in (2), the method of undetermined coefficients tells us that yp(t) = A cos(ω0t) +
B sin(ω0t) can not be the particular solution, because each term also solves the homogeneous
equation. In this case, we multiply the guess by t to obtain yp(t) = At cos(ω0t) + Bt sin(ω0t). This
means that the particular solution is an oscillation whose amplitude grows linearly with t. This
phenomenon is known as resonance. When we substitute yp into (2) and simplify, we obtain

−2mω0A sin(ω0t) + 2mω0B cos(ω0t) = F cos(ω0t).

(The terms containing a factor of t automatically cancel.) For this equation to hold for all t, we
must have A = 0 and B = F/(2mω0). Thus the general solution to (2) when ω = ω0 is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

2mω0
t sin(ω0t).

Special Case. For the special initial conditions y(0) = 0 and y′(0) = 0, we obtain c1 = c2 = 0,
and so y(t) = Ft sin(ω0t)/(2ω0). This solution is the fourth graph shown in Figure 1 (with m = 1
and ω0 = 3).

3 Damped (b > 0).

To solve (1) with the method of undetermined coefficients, we first guess yp(t) = A cos(ωt) +
B sin(ωt). We then check that neither term in yp solves the homogeneous equation. When b > 0,
there are three possible forms for the homogeneous solution (underdamped, critically damped, and
overdamped), but in all cases, the homogeneous solutions decay to zero as t increases, so neither
term in yp can be a solution to the homogeneous equation. So our first guess for yp will work.
Substituting this guess into (1) and choosing the coefficients to make yp a solutions yields

yp(t) = − (ω2 − ω2
0)Fm

m2(ω2 − ω2
0)2 + b2ω2

cos(ωt) +
ωbF

m2(ω2 − ω2
0)2 + b2ω2

sin(ωt) (5)

Recall that an expression of the form A cos(ωt)+B sin(ωt) may be written as R cos(ωt−φ), where
R =

√
A2 + B2 and tanφ = B/A. (R is the amplitude and φ is the phase angle.) With this, we

have
yp(t) =

F√
m2(ω2 − ω2

0)2 + b2ω2
cos(ωt− φ), (6)
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where

φ = arctan
( −ωb

m(ω2 − ω2
0)

)
.

The general solution to (1) is the usual

y(t) = yh(t) + yp(t).

As mentioned earlier, when b > 0, the homogeneous solution will decay to zero as t increases. For
this reason, the homogeneous solution is sometimes called the transient solution, and yp is called
the steady state response.

Example. Consider the initial value problem

y′′ + 2y′ + 10y = cos(2t), y(0) = −1/2, y′(0) = 4.

We have m = 1, b = 2, k = 10, F = 1 and ω = 2. We also find ω0 =
√

k/m =
√

10. The
homogeneous solution is

yh(t) = c1e
−t cos(3t) + c2e

−t sin(3t),

and, using (5), we find the particular solution to be

yp(t) =
3
26

cos(2t) +
1
13

sin(2t).

The solution to the initial value problem is

y(t) = − 8
13

e−t cos(3t) +
14
14

e−t sin(3t) +
3
26

cos(2t) +
1
13

sin(2t).

Figure 3 shows yh, yp and y = yh + yp.

3.1 Amplitude of the steady state.

Let us consider (6). The amplitude of the steady state is

F√
m2(ω2 − ω2

0)2 + b2ω2
.

We see that the amplitude depends on all the parameters in the differential equation. In particular,
the amplitude of the steady state solution depends on the frequency ω of the forcing. Let’s take
F = 1, m = 1, ω0 = 3, so we have

1√
(ω2 − 9)2 + b2ω2

.

The amplitude as a function of ω for several values of b is shown in Figure 4. Note that as b
gets smaller, the peak in the response becomes larger, and the location of the peak approaches ω0.
The graph of the amplitude when b = 0, for which the response “blows up” at ω0, is included for
comparison.
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Figure 3: Graphs of yh, yp and the full solution to (1) with parameter values m = 1, b = 2, k = 10,
F = 1, and with initial conditions y(0) = −1/2 and y′(0) = 4.

0 1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ω

b=0

b=1

b=2

b=4

b=8

Amplitude of the Steady State

Figure 4: Amplitude of the steady state response as a function of ω for several values of b. The
curve associated with b = 0 has a vertical asymptote at ω = 3.
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4 Brief Summary

1. The second order linear harmonic oscillator (damped or undamped) with sinusoidal forcing
can be solved by using the method of undetermined coefficients.

2. In the undamped case, beats occur when the forcing frequency is close to (but not equal to)
the natural frequency of the oscillator.

3. In the undamped case, resonance occurs when the forcing frequency is the same as the natural
frequency of the oscillator.

4. In the damped case (b > 0), the homogeneous solution decays to zero as t increases, so the
steady state behavior is determined by the particular solution.

5. In the damped case, the steady state behavior does not depend on the initial conditions.

6. The amplitude and phase of the steady state solution depend on all the parameters in the
problem.

Words to Know: harmonic oscillator, damped, undamped, resonance, beats, transient, steady
state, amplitude, phase
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