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1 The Periodically Forced Harmonic Oscillator.

By periodically forced harmonic oscillator, we mean the linear second order nonhomogeneous dif-
ferential equation

my′′ + γy′ + ky = F cos(ωt) (1)

where m > 0, γ ≥ 0, and k > 0. We can solve this problem completely; the goal of these notes is
to study the behavior of the solutions, and to point out some special cases.

The parameter γ is the damping coefficient (also known as the coefficient of friction).
We consider the cases γ = 0 (undamped) and γ > 0 (damped) separately.

2 Undamped (γ = 0).

When γ = 0, we have the equation

my′′ + ky = F cos(ωt). (2)

For convenience, define

ω0 =

√
k

m
.

This is the natural frequency of the undamped, unforced harmonic oscillator. To solve (2), we
must consider two cases: ω 6= ω0 and ω = ω0.

2.1 ω 6= ω0

By using the method of undetermined coefficients, we find the solution of (2) to be

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

m(ω2
0 − ω2)

cos(ωt), (3)

where, as usual, c1 and c2 are arbitrary constants.
Note that the amplitude of yp becomes larger as ω approaches ω0. This suggests that something

other than a purely sinusoidal function may result when ω = ω0.
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Beats. Consider the initial conditions y(0) = 0 and y′(0) = 0. Solving for c1 and c2 gives

c1 =
−F

m(ω2
0 − ω2)

and c2 = 0,

and thus
y(t) =

F

m(ω2
0 − ω2)

(cos(ωt)− cos(ω0t)).

By using some trigonometric identities, we may rewrite this as

y(t) =
2F

m(ω2
0 − ω2)

sin
(

(ω0 − ω)t
2

)
sin

(
(ω0 + ω)t

2

)
. (4)

Consider the two factors

2F

m(ω2
0 − ω2)

sin
(

(ω0 − ω)t
2

)
and sin

(
(ω0 + ω)t

2

)
.

Suppose ω ≈ ω0; then |ω0 − ω| is small, and the second expression has a much higher frequency
than the first. We see that the solution given in (4) is a “high” frequency oscillation, with an
amplitude that is modulated by a low frequency oscillation. In Figure 1, we consider an example
where F = 1, m = 1, and ω0 = 3. In the first three graphs, the solid lines are y(t) given by (4),
and the dashed lines show the envelope or modulation of the amplitude of the solution. Note that
the vertical scale is different in each graph: the amplitude increases as ω approaches ω0.

Remember that the solutions in Figure 1 are for the special initial conditions y(0) = 0 and
y′(0) = 0. Beats occur with other initial conditions, but the function that modulates the amplitude
of the high frequency oscillation will not be a simple sine function. Figure 2 shows a solution to
(2) with ω = 3.5, but with y(0) = 1 and y′(0) = −2.

2.2 ω = ω0: Resonance

When ω = ω0 in (2), the method of undetermined coefficients tells us that yp(t) = A cos(ω0t) +
B sin(ω0t) can not be the particular solution, because each term also solves the homogeneous
equation. In this case, we multiply the guess by t to obtain yp(t) = At cos(ω0t) + Bt sin(ω0t). This
means that the particular solution is an oscillation whose amplitude grows linearly with t. This
phenomenon is known as resonance. When we substitute yp into (2) and simplify, we obtain

−2mω0A sin(ω0t) + 2mω0B cos(ω0t) = F cos(ω0t).

(The terms containing a factor of t automatically cancel.) For this equation to hold for all t, we
must have A = 0 and B = F/(2mω0). Thus the general solution to (2) when ω = ω0 is

y(t) = c1 cos(ω0t) + c2 sin(ω0t) +
F

2mω0
t sin(ω0t).

Special Case. For the special initial conditions y(0) = 0 and y′(0) = 0, we obtain c1 = c2 = 0,
and so y(t) = Ft sin(ω0t)/(2ω0). This solution is the fourth graph shown in Figure 1 (with F = 1,
m = 1 and ω0 = 3).
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Figure 1: Solutions to (2) for several values of ω. The other parameters are F = 1, m = 1 and
ω0 = 3. The initial conditions are y(0) = 0 and y′(0) = 0. The solid curves are the actual solutions,
while the dashed lines show the envelope (or modulation) of the amplitude.
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Figure 2: Solution to (2) for ω = 3.5, with the initial conditions y(0) = 1 and y′(0) = −2.
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3 Damped (γ > 0).

To solve (1) with the method of undetermined coefficients, we first guess Yp(t) = A cos(ωt) +
B sin(ωt). We then check that neither term in Yp solves the homogeneous equation. When γ > 0,
there are three possible forms for the homogeneous solution (underdamped, critically damped, and
overdamped), but in all cases, the homogeneous solutions decay to zero as t increases, so neither
term in Yp can be a solution to the homogeneous equation. So our first guess for Yp will work.
Substituting this guess into (1) and choosing the coefficients to make Yp a solutions yields

Yp(t) =
(ω2

0 − ω2)Fm

m2(ω2
0 − ω2)2 + γ2ω2

cos(ωt) +
ωγF

m2(ω2
0 − ω2)2 + γ2ω2

sin(ωt) (5)

Recall that an expression of the form A cos(ωt) + B sin(ωt) may be written as R cos(ωt− δ), where
R =

√
A2 + B2 and tan δ = B/A. (R is the amplitude and δ is the phase angle.) With this, we

have
Yp(t) =

F√
m2(ω2

0 − ω2)2 + γ2ω2
cos(ωt− δ), (6)

where

δ = arctan
(

ωγ

m(ω2
0 − ω2)

)
.

The general solution to (1) is the usual

y(t) = yh(t) + Yp(t).

As mentioned earlier, when γ > 0, the homogeneous solution will decay to zero as t increases. For
this reason, the homogeneous solution is sometimes called the transient solution, and Yp is called
the steady state response.

Example. Consider the initial value problem

y′′ + 2y′ + 10y = cos(2t), y(0) = −1/2, y′(0) = 4.

We have m = 1, γ = 2, k = 10, F = 1 and ω = 2. We also find ω0 =
√

k/m =
√

10. The
homogeneous solution is

yh(t) = c1e
−t cos(3t) + c2e

−t sin(3t),

and, using (5), we find the particular solution to be

Yp(t) =
3
26

cos(2t) +
1
13

sin(2t).

The solution to the initial value problem is

y(t) = − 8
13

e−t cos(3t) +
14
13

e−t sin(3t) +
3
26

cos(2t) +
1
13

sin(2t).

Figure 3 shows yh, Yp and y = yh + Yp.
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Figure 3: Graphs of yh, Yp and the full solution to (1) with parameter values m = 1, γ = 2, k = 10,
F = 1, and with initial conditions y(0) = −1/2 and y′(0) = 4.

3.1 Amplitude of the steady state.

Let us consider the particular solution given by (6). The amplitude of the steady state is

F√
m2(ω2

0 − ω2)2 + γ2ω2
.

We see that the amplitude depends on all the parameters in the differential equation (recall that
ω0 =

√
k/m, so the amplitude depends on k through ω0). In particular, the amplitude of the

steady state solution depends on the frequency ω of the forcing. Let’s take F = 1, m = 1, ω0 = 3,
so we have

1√
(ω2 − 9)2 + γ2ω2

.

The amplitude as a function of ω for several values of γ is shown in Figure 4. Note that as γ
gets smaller, the peak in the response becomes larger, and the location of the peak approaches ω0.
The graph of the amplitude when γ = 0, for which the response “blows up” at ω0, is included for
comparison.
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Figure 4: Amplitude of the steady state response as a function of ω for several values of γ. The
curve associated with γ = 0 has a vertical asymptote at ω = 3.

4 Brief Summary

1. The second order linear harmonic oscillator (damped or undamped) with sinusoidal forcing
can be solved by using the method of undetermined coefficients.

2. In the undamped case, beats occur when the forcing frequency is close to (but not equal to)
the natural frequency of the oscillator. (This is because the homogeneous solution and the
particular solution are both sinusoidal functions, and their frequencies are close to each other.
Whenever two sinusoidal functions with close frequencies are added, beats will occur.)

3. In the undamped case, resonance occurs when the forcing frequency is the same as the natural
frequency of the oscillator.

4. In the damped case (γ > 0), the homogeneous solution decays to zero as t increases, so the
steady state behavior is determined by the particular solution.

5. In the damped case, the steady state behavior does not depend on the initial conditions.

6. The amplitude and phase of the steady state solution depend on all the parameters in the
problem.

Words to Know: harmonic oscillator, damped, undamped, resonance, beats, transient, steady
state, amplitude, phase
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