Math 311 Self-study Module
Linearization

The text focuses on linear partial differential equations. PDEs that arise from realistic models
of the natural world are generalhonlinear The study of linear PDEs is still useful, because often
the solutions to a nonlinear PDE can be approximated by the solutions to an associated linear PDE.
In this module, we discuss thi@earizationof a nonlinear PDE about a known solution.

We will use examples with one space dimension (so our solutiong&g), but the same idea
applies to higher dimensional problems.

Example 1. Consider the nonlinear PDE farx,t)

Ju d%u
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with boundary conditions
du Jdu

On the right of (1), we have the tero{1 — u) = u— u?, and the termu? makes this a nonlinear
PDE.

The PDE has two uniform equilibrium solutiong(x,t) = 0 andu(x,t) = 1. (These are easy
enough to findequilibriummean%‘ =0, anduniformmeans‘z—f(‘zJ = 0, so the uniform equilibrium
solutions are the solutions tg1 — u) = 0. The constant solutions= 0 andu = 1 also satisfy the
boundary conditions, so these are the uniform equilibrium solutions to the PDE.)

Now suppose that the initial conditions to the problem are suchutxat) is initially close
to u(x,t) = 0. That is, we considen(x,t) = 0+ ew(x,t), wheree is “small”. If we make this
substitution into the PDE, we obtain
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Now take the limite — O; we obtain thdinearization of (1) at u=0:
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Also, sinceu(x,t) = ew(x,t), w satisfies the same boundary conditionsias
We can solve the linearization by the method of separation of variablegx,tf) = ¢ (x)h(t),
thenh satisfies
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and¢ satisfies the eigenvalue problem
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The eigenvalues arky = —1 (with eigenfunctionpg(x) = 1), andA, = (nz/L)? — 1 (with eigen-
function ¢n(x) = cognmx/L) for n=1,2,3,.... The solution to the equation foris hpe *t. We
form the general solution as the infinite series

w(xt) = coe + ¥ coe (" L1t cognmx/L)
n=1

The coefficientx, (n=0,1,2,...) depend on the initial conditions. Unless we choose the initial
conditions very carefully, we expect that each coefficient is nonzero. In particglg0. The
term coé! will grow exponentially ag increases. Moreover, If > x, thend; = (7/L)2—1 < 0,
and there will also be exponential growth of the tecge("/L)*~Dtcogzx/L). In general, if
L > mr, then the “modes” associated witl for n=0,1,2,..., mwill all grow exponentially as
increases.

Remember thatw represents a “small” perturbation from the equilibriura 0. The solution
to the linearization atl = O tells us that this small perturbation will not remain small; instead, it
will grow exponentially. We say that the equilibrium= 0 isunstable

Be careful to interpret this result appropriately. We are not sayinguiixat) will continue to
grow exponentially for an arbitrarily long time. The linearization was based on the assumption that
the perturbation was small. If the solution to the linearized equation grows exponentially, it will
not remain small-but then the linearization is no longer a valid approximation. Our analysis so far
does not tell us what will happen tgx,t) in the long run; it just tells us that if the solution starts
nearu = 0, it will not remain close ta = 0.

Now let's consider the linearization at the other uniform equilibrium; 1. We letu(xt) =
1+ ew(x,t); the PDE becomes
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In this case, the eigenvalues at¢= 1, andA, = (nt/L)2+1 (n=1,2,3,...), with the same
eigenfunctions as before. The general solution is

w(x,t) = coe™ + 5 che (/L% Dt cognax/L)
=1

All the exponential terms have negative coefficients in the exponents, so all the modes decay to
zero.

It appears that a small perturbation to the equilibrius 1 will remain small. (In fact, the
perturbation will decay to zero.) In this case, we say that the equilibrisgtaide

Linearization: A General Procedure

The steps to derive the linearization of the PDE in the previous example will not work in
general. In that example, the nonlinear term w4sa polynomial, and we could obtain the lin-
earization by using a little algebra and then setting 0. This will not work with a nonlinearity



such as sifu). Here we give a general procedure for obtaining the linearization at a known uni-
form equilibrium solution. (The method also works for nonuniform solutions, but we will not see
any examples here.)

Linearization Procedure
Supposel(x,t) = Ug is an uniform equilibrium solution to the PDE.

1. Substitutau(x,t) = Ug+ ew(x,t) into the PDE.

2. Take the derivative of all expressions in the PIiEh respect tee. (Don'’t forget to use the
chain rule where necessary.)

3. Sete = 0. The remaining equation is the linearizatiorugt,t) = Up.

Example 2. Consider
a_2u +sinu= 8_2u
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with boundary conditions

u(0,t) =0, u(L,t) =0.
It is easily verifed thati(x,t) = Ug = 0 is an equilibrium solution. To find the linearization of the
PDE, we seti(x,t) = 0+ ew(x,t) and obtain
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Then we take the derivative with respecteo (For example,% (e&"> = %?’;V.) The equation
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(Note how the chain rule was usegé sin(ew) = cogew)w.) Finally, we sete = 0 to obtain the
linearization:
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(since cof0) = 1).

Exercises

1. Apply the linearization procedue to the first example to rederive the linearizatioe- &
and atu = 1. (Just rederive the equations; don’t repeat the stability analysis.)

2. Consider the PDE and boundary conditions
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— +sinu=—— —(0,t) =0, —(L,t)=0.
Find all the uniform equilibrium solutions, and use the linearization at each equilibrium to
determine whether or not it is stable.



