
Math 311 Self-study Module

Linearization

The text focuses on linear partial differential equations. PDEs that arise from realistic models
of the natural world are generallynonlinear. The study of linear PDEs is still useful, because often
the solutions to a nonlinear PDE can be approximated by the solutions to an associated linear PDE.
In this module, we discuss thelinearizationof a nonlinear PDE about a known solution.

We will use examples with one space dimension (so our solutions areu(x, t)), but the same idea
applies to higher dimensional problems.

Example 1. Consider the nonlinear PDE foru(x, t)

∂u
∂ t

= u(1−u)+
∂ 2u
∂x2 (0 < x < L) (1)

with boundary conditions
∂u
∂x

(0, t) = 0,
∂u
∂x

(L, t) = 0 (2)

On the right of (1), we have the termu(1−u) = u−u2, and the termu2 makes this a nonlinear
PDE.

The PDE has two uniform equilibrium solutions,u(x, t) = 0 andu(x, t) = 1. (These are easy
enough to find:equilibriummeans∂u

∂ t = 0, anduniformmeans∂ 2u
∂x2 = 0, so the uniform equilibrium

solutions are the solutions tou(1−u) = 0. The constant solutionsu = 0 andu = 1 also satisfy the
boundary conditions, so these are the uniform equilibrium solutions to the PDE.)

Now suppose that the initial conditions to the problem are such thatu(x, t) is initially close
to u(x, t) = 0. That is, we consideru(x, t) = 0+ εw(x, t), whereε is “small”. If we make this
substitution into the PDE, we obtain

ε
∂w
∂ t

= (εw)(1− εw)+ ε
∂ 2w
∂x2

or
∂w
∂ t

= w− εw2 +
∂ 2w
∂x2

Now take the limitε → 0; we obtain thelinearization of (1) at u= 0:

∂w
∂ t

= w+
∂ 2w
∂x2 (3)

Also, sinceu(x, t) = εw(x, t), w satisfies the same boundary conditions asu.
We can solve the linearization by the method of separation of variables. Ifu(x, t) = φ(x)h(t),

thenh satisfies
dh
dt

=−λh,

andφ satisfies the eigenvalue problem

d2φ

dx2 +φ =−λφ ,
dφ

dx
(0) = 0,

dφ

dx
(L) = 0.
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The eigenvalues areλ0 = −1 (with eigenfunctionφ0(x) = 1), andλn = (nπ/L)2−1 (with eigen-
functionφn(x) = cos(nπx/L) for n = 1,2,3, . . .. The solution to the equation forh is h0e−λ t . We
form the general solution as the infinite series

w(x, t) = c0et +
∞

∑
n=1

cne−((nπ/L)2−1)t cos(nπx/L)

The coefficientscn (n = 0,1,2, . . .) depend on the initial conditions. Unless we choose the initial
conditions very carefully, we expect that each coefficient is nonzero. In particular,c0 6= 0. The
termc0et will grow exponentially ast increases. Moreover, ifL > π, thenλ1 = (π/L)2−1 < 0,
and there will also be exponential growth of the termc1e−((π/L)2−1)t cos(πx/L). In general, if
L > mπ, then the “modes” associated withλn for n = 0,1,2, . . . ,mwill all grow exponentially ast
increases.

Remember thatεw represents a “small” perturbation from the equilibriumu = 0. The solution
to the linearization atu = 0 tells us that this small perturbation will not remain small; instead, it
will grow exponentially. We say that the equilibriumu = 0 isunstable.

Be careful to interpret this result appropriately. We are not saying thatu(x, t) will continue to
grow exponentially for an arbitrarily long time. The linearization was based on the assumption that
the perturbation was small. If the solution to the linearized equation grows exponentially, it will
not remain small–but then the linearization is no longer a valid approximation. Our analysis so far
does not tell us what will happen tou(x, t) in the long run; it just tells us that if the solution starts
nearu = 0, it will not remain close tou = 0.

Now let’s consider the linearization at the other uniform equilibrium,u = 1. We letu(x, t) =
1+ εw(x, t); the PDE becomes

∂w
∂ t

=−w− εw2 +
∂ 2w
∂x2

andε = 0 gives
∂w
∂ t

=−w+
∂ 2w
∂x2

In this case, the eigenvalues areλ0 = 1, andλn = (nπ/L)2 + 1 (n = 1,2,3, . . .), with the same
eigenfunctions as before. The general solution is

w(x, t) = c0e−t +
∞

∑
n=1

cne−((nπ/L)2+1)t cos(nπx/L)

All the exponential terms have negative coefficients in the exponents, so all the modes decay to
zero.

It appears that a small perturbation to the equilibriumu = 1 will remain small. (In fact, the
perturbation will decay to zero.) In this case, we say that the equilibrium isstable.

Linearization: A General Procedure

The steps to derive the linearization of the PDE in the previous example will not work in
general. In that example, the nonlinear term wasu2, a polynomial, and we could obtain the lin-
earization by using a little algebra and then settingε = 0. This will not work with a nonlinearity
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such as sin(u). Here we give a general procedure for obtaining the linearization at a known uni-
form equilibrium solution. (The method also works for nonuniform solutions, but we will not see
any examples here.)

Linearization Procedure
Supposeu(x, t) = U0 is an uniform equilibrium solution to the PDE.

1. Substituteu(x, t) = U0 + εw(x, t) into the PDE.

2. Take the derivative of all expressions in the PDEwith respect toε. (Don’t forget to use the
chain rule where necessary.)

3. Setε = 0. The remaining equation is the linearization atu(x, t) = U0.

Example 2. Consider
∂ 2u
∂ t2 +sinu =

∂ 2u
∂x2

with boundary conditions
u(0, t) = 0, u(L, t) = 0.

It is easily verifed thatu(x, t) = U0 = 0 is an equilibrium solution. To find the linearization of the
PDE, we setu(x, t) = 0+ εw(x, t) and obtain

ε
∂ 2w
∂ t2 +sin(εw) = ε

∂ 2w
∂x2

Then we take the derivative with respect toε. (For example,∂

∂ε

(
ε

∂ 2w
∂ t2

)
= ∂ 2w

∂ t2 .) The equation

becomes
∂ 2w
∂ t2 +cos(εw)w =

∂ 2w
∂x2

(Note how the chain rule was used:∂

∂ε
sin(εw) = cos(εw)w.) Finally, we setε = 0 to obtain the

linearization:
∂ 2w
∂ t2 +w =

∂ 2w
∂x2

(since cos(0) = 1).

Exercises

1. Apply the linearization procedue to the first example to rederive the linearization atu = 0
and atu = 1. (Just rederive the equations; don’t repeat the stability analysis.)

2. Consider the PDE and boundary conditions

∂ 2u
∂ t2 +sinu =

∂ 2u
∂x2 ,

∂u
∂x

(0, t) = 0,
∂u
∂x

(L, t) = 0.

Find all the uniform equilibrium solutions, and use the linearization at each equilibrium to
determine whether or not it is stable.
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