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Homework 2 Selected Solutions

2.3.8 The PDE is
∂u
∂ t

= k
∂ 2u
∂x2 −αu (1)

where α > 0, with boundary conditions

u(0, t) = 0, and u(L, t) = 0. (2)

(a) The equation for an equilibrium is

k
∂ 2u
∂x2 −αu = 0 (3)

This second order ordinary differential equation has the general solution

ue(x) = c1e
√

α/k x + c2e−
√

α/k x (4)

Alternatively, we can use sinh and cosh to express the fundamental set of solutions; then the
general solution may be written

ue(x) = c1 cosh
(√

α/k x
)

+ c2 sinh
(√

α/k x
)

(5)

Regardless of the form that we choose, if we try to satisfy the boundary conditions ue(0) = 0
and ue(L) = 0, we find c1 = 0 and c2 = 0. So the only possible equilibrium solution is

ue(x) = 0. (6)

(b) To solve the time-dependent problem, we begin with separation of variables:

u(x, t) = φ(x)h(t) (7)

Then the PDE becomes

φ
dh
dt

= k
d2φ

dx2 h−αφh (8)

and the boundary conditions become

φ(0) = 0 and φ(L) = 0. (9)

After some algebra, (8) leads to

1
h

dh
dt

=
1
φ

(
k

d2φ

dx2 −αφ

)
=−λ (10)
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where I have introduced the separation constant λ . Thus h must satisfy the ordinary differ-
ential equation

dh
dt

=−λh, (11)

and φ must satisfy the eigenvalue problem

k
d2φ

dx2 − (α−λ )φ = 0, φ(0) = 0, φ(L) = 0. (12)

We now solve this eigenvalue problem. The form of the general solution to the differential
equation in (12) depends on the sign of α−λ . We have three cases to consider.

λ < αλ < αλ < α: In this case, α−λ > 0, and the general solution to the ordinary differential equation
in the eigenvalue problem is

φ(x) = c1 cosh(µx)+ c2 sinh(µx) (13)

where, for convenience, I have introduced

µ =

√
α−λ

k
(14)

If we now try to satisfy the boundary conditions of the eigenvalue problem, we find c1 = 0
and c2 = 0; the only solution to the eigenvalue problem when λ < α is the trivial solution.
Thus there are no eigenvalues λ such that λ < α .

λ = αλ = αλ = α: In this case, the general solution to the differential equation in the eigenvalue prob-
lem is

φ(x) = c1x+ c2, (15)

and the only solution that satisfies the boundary conditions is the trivial solution φ(x) = 0.
So λ = α is not an eigenvalue.

λ > αλ > αλ > α: For convenience, let

ω =

√
λ −α

k
(16)

The general solution to the differential equation of the eigenvalue problem (12) is

φ(x) = c1 cos(ωx)+ c2 sin(ωx) (17)

The first boundary condition φ(0) = 0 implies c1 = 0. The second boundary condition im-
plies

c2 sin(ωL) = 0 (18)

Since c2 = 0 only gives us the trivial solution, we assume c2 6= 0. Then sin(ωL) = 0 implies

ωL = nπ, n ∈ Z (19)
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or, after substituting in the definition of ω and doing some algebra,

λn = α + k
(nπ

L

)2
, n = 1,2,3, . . . (20)

These are the eigenvalues for the eigenvalue problem (12). Note that we now only use the
positive integers; n = 0 gives λ = α , but we are only considering λ > α here, and n < 0
gives the same set of values as n > 0, so there is no need to include negative n.

The eigenfunctions are
φn(x) = sin

(nπx
L

)
(21)

(I could include an arbitrary–but nonzero–constant in front of each eigenfunction, but it is
not really necessary at this point. We know that any nonzero multiple of an eigenfunction is
still an eigenfunction; moreover, we will soon introduce arbitrary constants when we write
down the series solution to the PDE.)

At this point, we have solved the eigenfunction problem (12). Now, for each eigenvalue, we
find the solution to the equation for h given in (11). This is simply

hn(t) = h0e−λnt

= h0e−(α+k(nπ/L)2)t
(22)

where h0 is an arbitrary constant. (This arbitrary constant is not important; in effect, it will
be absorbed in the constant Bn to be introduced in a moment.)

Each function of the form φn(x)hn(t) solves the original PDE and the boundary conditions
(but not the initial conditions u(x,0) = f (x). So we write the solution u(x, t) as an infinite
series

u(x, t) =
∞

∑
n=1

Bne−(α+k(nπ/L)2)t sin
(nπx

L

)
= e−αt

∞

∑
n=1

Bne−k(nπ/L)2t sin
(nπx

L

) (23)

(Compare this to equation 2.3.30 in the text, which is the solution to the case where α = 0.)

To satisfy the initial condition, we must choose the coefficients Bn so that u(x,0) = f (x).
That is,

f (x) =
∞

∑
n=1

Bn sin
(nπx

L

)
, (24)

which tells us that the coefficients Bn are the Fourier sine series coefficients of the function
f (x):

Bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)
dx (25)

Equation (23) with (25) is the solution to the original problem.

From (23), we see that u(x, t) approaches zero as t → ∞. The solution converges to the
equilibrium solution that we found in part (a).
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2.3.9 This is the same problem as Exercise 2.3.8, except that we assume α < 0.

(a) The equation for an equilibrium solution is still (3), but since α < 0, the general solution is

ue(x) = c1 cos

(√
−α

k
x

)
+ c2 sin

(√
−α

k
x

)
(26)

To satisfy the boundary condition ue(0) = 0, we must have c1 = 0. At x = L, we must have

c2 sin

(√
−α

k
L

)
= 0 (27)

If
√
−α/k L 6= nπ for any integer n, then c2 must be zero, and the only equilibrium solution

is ue(x) = 0. If, however,
√
−α/kL = nπ for some integer n, then there is an equilibrium

solution

ue(x) = c2 sin

(√
−α

k
x

)
(28)

wher c2 is an arbitrary constant.

Before moving on to part (b), let’s be sure we understand this result. Keep in mind that k and
α are physical parameters; in a real heat equation problem, we can’t “choose” these. They
are determined by the physical material in the problem. What the above calculation says is
that, for a given k, α and L, we would normally expect that the only equilibrium solution is
ue(x) = 0. If it turns out that

√
−α/k L happens to be an integer multiple of π , then there

are nontrivial equilibrium solutions of the form given above. This does not say that, with k,
α and L fixed, there is an equilibrium solution for any n.

(b) The formula for the solution to the problem when α < 0 is the same as when α > 0:

u(x, t) =
∞

∑
n=1

Bne−(α+k(nπ/L)2)t sin
(nπx

L

)
(29)

where

Bn =
2
L

∫ L

0
f (x)sin

(nπx
L

)
dx (30)

Now, consider the behavior of this solution as t →∞. The only dependence on t comes from
the factors exp(−(α + k(nπ/L)2)t).

If −α < k(π/L)2 (i.e. the coefficient of t in the exponent is negative when n = 1), then all
the exponential factors will decay, and the solution will approach 0 as t → ∞.

If −α > k(π/L)2, then the coefficient of t in exp(−(α + k(π/L)2)t) is positive, and the first
term in the series solution will grow exponentially. (Well, it will if B1 6= 0. For an arbitrary
f (x), we expect that all the coefficients Bn will be nonzero.)
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If −α = k(π/L)2, then the coefficient of t in the first exponential factor is zero, and the first
term in the series solution is B1 sin

(nπx
L

)
. The coefficients of t in the rest of the (infinitely

many) exponential factors will be negative, so as t → ∞,

u(x, t)→ B1 sin
(nπx

L

)
(31)

(This is, of course, a very special–and unlikely–case!)

So what about the case where −α = k(nπ/L)2 for some n > 1? We know from part (a) that
there is a nontrivial equilibrium in this special case, and if you look again at the series solu-
tion for u(x, t) given above, you will see that in this case, the coefficient of t in the exponential
factor of the nth term will be zero. So one term in the series solution will be Bn sin(nπx/L);
this particular term will not grow or decay. (This is precisely the equilibrium solution that
we found in part (a).) However, the exponentials preceding this term in the series will have
positive coefficients of t, so they will cause the solution to grow exponentially; the solution
will not approach the equilibrium as t →∞. (We say that the equilibrium is unstable.) In the
very special case that Bi = 0 for 1≤ i < n, then the solution would approach the equilibrium
Bn sin(nπx/L).
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