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Homework 4 Selected Solutions

1.5.9

(a) Since the temperatures on the inner and outer boundaries are constant (in particular, indepen-
dent ofθ ), the equilibrium solutionue will be independent ofθ . The equilibrium solution
will satisfy

1
r

d
dr

(
r
due

dr

)
= 0 (1)

By integrating, we find
ue(r) = c1 +c2 ln r (2)

We must haveue(r1) = T1, andue(r2) = T2. A little algebra leads to

c1 =
T1 ln r1−T2 ln r2

ln r1− ln r2
, c2 =

T2−T1

ln r1− ln r1
(3)

After putting these values into the equation forue(r) and doing a bit more algebra, we arrive
at the solution in the text.

(b) Short answer only:ue(r) = T1.

1.5.14 An isobar is the same thing as a contour line ofu.
Let~n be a unit vector that is normal to the boundary, and let~φ be the flux. The condition for an

insulated boundary is
~φ ·~n = 0 (4)

on the boundary. Fourier’s Law says~φ = −K0∇u, so the insulated boundary condition can be
written

∇u·~n = 0. (5)

In other words, the gradient ofu must be perpendicular to~n; this means the gradient is parallel
to the boundary. Since the gradient is normal to the contour lines ofu, the contour line must be
perpendicular to the boundary.

2.5.1(b) The usual separation procedureu(x,y) = h(x)φ(y) leads the eigenvalue problem forφ :

d2φ

dy2 =−λφ , φ(0) = 0, φ(H) = 0. (6)

We have solved this before; the eigenvalues areλ = (nπ/H)2, (n= 1,2,3, . . .), and the correspond-
ing eigenfunctions areφ(y) = sin(nπy/H).

The differential equation forh(x) is

d2h
dx2 −λh = 0, (7)
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whereλ is an eigenvalue. We knowλ = (nπ/H)2 > 0, so we could write the general solution to
the differential equation as

h(x) = c1enπx/H +c2e−nπx/H , (8)

or as
h(x) = c1cosh(nπx/H)+c2sinh(nπx/H) (9)

but because we will wanth(x) to satisfy a homogeneous boundary condition atx = L, it is more
convenient to use the form

h(x) = c1cosh(nπ(x−L)/H)+c2sinh(nπ(x−L)/H). (10)

From the original boundary condition foru given atx = L, we find dh
dx(L) = 0. We calculate

dh
dx

= (c1nπ/H)sinh(nπ(x−L)/H)+(c2nπ/H)cosh(nπ(x−L)/H) (11)

so atx = L, we must havec2nπ/H = 0, which impliesc2 = 0. The solution to the differential
equation forh that also satisfies the homogeneous boundary condition atx = L is therefore

h(x) = c1cosh(nπ(x−L)/H) (12)

We combine this with the eigenfunctions to obtain the solution as the series

u(x,y) =
∞

∑
n=1

bnsin(nπy/H)cosh(nπ(x−L)/H) (13)

Now we must determine the coefficientsbn so that the nonhomogeneous boundary condition at
x = 0 is satisfied. We find

∂u
∂x

=
∞

∑
n=1

(bnnπ/H)sin(nπy/H)sinh(nπ(x−L)/H) (14)

so
∂u
∂x

(0,y) =−
∞

∑
n=1

(bnnπ/H)sin(nπy/H)sinh(nπL/H) = g(y) (15)

(I have used sinh(−p) =−sinh(p).) This says that the series is a Fourier sine series forg(y), and
therefore

−bnnπ sinh(nπL/H)/H =
2
L

∫ L

0
g(y)sin(nπy/H)dy (16)

or

bn =
−2H

nπLsinh(nπL/H)

∫ L

0
g(y)sin(nπy/H)dy (17)
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2.5.6(b) Laplace’s equation in polar coordinates is equation (2.5.30) in the text. Separation of
variables in the formu(r,θ) = G(r)φ(θ) leads to equation (2.5.36), andG andφ satisfy the homo-
geneous boundary conditions

dφ

dθ
(0) = 0 (0 < r < a)

dφ

dθ
(π) = 0 (0 < r < a)

|G(0)|< ∞

(18)

This is a “known” eigenvalue problem forφ , with L = π. The eigenvalues areλ = n2 for n =
0,1,2, . . .. The eigenfunction forλ = 0 is the constant function, and forλ = n2 > 0, the eigenfunc-
tion is cos(nθ).

For λ = 0, the equation forG has the solution given in equation (2.5.44), and by the same
reasoning as in the text, we eliminate the function lnr.

For λ = n > 0, the solution to theG equation is given by equation (2.5.43), and again the
boundedness requirement atr = 0 allows us to eliminate the functionr−n.

For each eigenvalue, we now have a productG(r)φ(θ) that solves the PDE and the homoge-
neous boundary conditions. We form the infinite series of these solutions:

u(r,θ) = A0 +
∞

∑
n=1

Anrncos(nθ) (19)

Finally, we must choose the coefficients so that the function satisfies the nonhomogeneous bound-
ary condition atr = a. That is, we want

u(a,θ) = A0 +
∞

∑
n=1

Anancos(nθ) = g(θ) (20)

This says we want the series to be the Fourier cosine series forg(θ), which tells us that the coeffi-
cients must be

A0 =
1
π

∫
π

0
g(θ)dθ , An =

2
πan

∫
π

0
g(θ)cos(nθ)dθ (21)

8.2.1(a) The differential equation is the heat equation

∂u
∂ t

= k
∂ 2u
∂x2 (22)

with the boundary conditions

u(0, t) = A,
∂u
∂x

(L, t) = B (23)

and the initial condition
u(x,0) = f (x) (24)

For an equilibrium solutionue(x), we have

d2ue

dx2 = 0, so ue(x) = c1x+c2 (25)
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and we can satisfy the boundary conditions withc1 = B andc2 = A. Thus the equilibrium solution
is

ue(x) = Bx+A. (26)

Now we write
u(x, t) = ue(x)+w(x, t) = Bx+A+w(x, t) (27)

Sinceu(x, t) solves the original problem, we have

∂ (ue(x)+w(x, t))
∂ t

=
∂ 2(ue(x)+w(x, t))

∂x2 (28)

which simplies to
∂w
∂ t

=
∂ 2w
∂x2 (29)

since∂ue
∂ t = 0 andd2ue

dx2 = 0. At x = 0 we have

A = u(0, t) = ue(0)+w(0, t) = A+w(0, t), (30)

so
w(0, t) = 0. (31)

At x = L we have

B =
∂u
∂x

(L, t) =
∂ (ue+w)

∂x
(L, t) =

due

dx
(L)+

∂w
∂x

(L, t) = B+
∂w
∂x

(L, t), (32)

so
∂w
∂x

(L, t) = 0. (33)

At t = 0, we have
f (x) = u(x,0) = ue(x)+w(x,0), (34)

so
w(x,0) = f (x)−ue(x) (35)

To summarize,w(x, t) satsfies the PDE (29), the homogeneous boundary conditions (31) and (33),
and the initial condition (35)

We solve forw(x, t) with the usual steps of separating variables, solving the appropriate eigen-
value problem, and forming a series solution. The solution is

w(x, t) =
∞

∑
n=1

cne−(n−1/2)π/L)2kt sin((n−1/2)πx/L) (36)

where

cn =
2
L

∫ L

0
( f (x)−ue(x))sin((n−1/2)πx/L)dx (37)

The solution to the original problem is then

u(x, t) = ue(x)+w(x, t) (38)

As t → ∞, we see thatw(x, t)→ 0, sou(x, t)→ ue(x).
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