Math 311 Applied Mathematics - Physical Sciences Spring 2007

Homework 4 Selected Solutions

1.5.9

(a) Since the temperatures on the inner and outer boundaries are constant (in particular, indepen-
dent of @), the equilibrium solutionue will be independent ob. The equilibrium solution

will satisfy

1 d / due

rdr ( dr ) 0 @
By integrating, we find

Ue(r) =c1+colnr (2)

We must havelg(r1) = Ty, andug(r2) = To. A little algebra leads to

_T1|nr1—T2|nr2 To—T1

= 2L 3)

Inry—Inrp, ’ Inr{—Inrq

After putting these values into the equation fig(r) and doing a bit more algebra, we arrive
at the solution in the text.

(b) Short answer onlyug(r) = Ts.

1.5.14 Anisobar is the same thing as a contour lineiof
Letfi be a unit vector that is normal to the boundary, an@lbe the flux. The condition for an
insulated boundary is
¢-A=0 (4)

on the boundary. Fourier's Law says= —KoOu, so the insulated boundary condition can be
written
Ou-fi=0. )

In other words, the gradient of must be perpendicular tid this means the gradient is parallel
to the boundary. Since the gradient is normal to the contour lines thie contour line must be
perpendicular to the boundary.

2.5.1(b) The usual separation proceduwre,y) = h(x)¢(y) leads the eigenvalue problem for

d?9p
dy

We have solved this before; the eigenvaluesiate(nz/H)?, (n=1,2,3,...), and the correspond-
ing eigenfunctions arg¢(y) = sin(nzwy/H).
The differential equation fan(x) is

—A¢, ¢(0)=0, ¢(H)=0. (6)

d?h
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whereA is an eigenvalue. We know = (nz/H)? > 0, so we could write the general solution to
the differential equation as
h(x) = c1&™/H 4 e /M, (8)

or as
h(x) = ¢y cosh{nmx/H) + casinh(nzx/H) 9)

but because we will warti(x) to satisfy a homogeneous boundary conditiow atL, it is more
convenient to use the form

h(x) = cpcoshiinz(x—L)/H) + casinhinz(x—L)/H). (20)
From the original boundary condition fargiven atx = L, we find g—Q(L) = 0. We calculate

3_2 = (canz/H) sinh(nz(x— L) /H) + (cznz/H) coshinzr(x— L) /H) (11)

so atx = L, we must have;nt/H = 0, which impliesc; = 0. The solution to the differential
equation forh that also satisfies the homogeneous boundary conditiwe-dt is therefore

h(x) = cicoshiinz(x—L)/H) (12)

We combine this with the eigenfunctions to obtain the solution as the series
u(x,y) = Z bnsin(ny/H)coshnr(x—L)/H) (13)
n=1

Now we must determine the coefficieris so that the nonhomogeneous boundary condition at
x = 0 is satisfied. We find

3—2 = i (bnnz/H) sin(ny/H) sinh(nz(x—L)/H) (14)
n=1
o) 5 .
%:(O, y)=— Zl(bnmr/H)sin(nny/H)sinl‘(nnL/H) =g(y) (15)

(I have used sinfr-p) = —sinh(p).) This says that the series is a Fourier sine serieg(fpr, and
therefore

—bnnzsinh(nzL/H)/H = %/OL g(y)sin(nty/H)dy (16)
or
L

L —oH
" nrLsinh(nzL/H)

/0 g(y)sin(nzy/H)dy (17)



2.5.6(b) Laplace’s equation in polar coordinates is equation (2.5.30) in the text. Separation of
variables in the fornu(r,6) = G(r)¢(6) leads to equation (2.5.36), a@and¢ satisfy the homo-
geneous boundary conditions

do =

@(0)_0 (0<r<a)

do . (18)
de(n)_o (0O<r<a)

IG(0)] < e

This is a “known” eigenvalue problem far, with L = z. The eigenvalues arg = n® for n =
0,1,2,.... The eigenfunction fok = 0 is the constant function, and far= n? > 0, the eigenfunc-
tion is cogno).

For A = 0, the equation foG has the solution given in equation (2.5.44), and by the same
reasoning as in the text, we eliminate the function In

For A = n > 0, the solution to th& equation is given by equation (2.5.43), and again the
boundedness requirementrat 0 allows us to eliminate the functian™.

For each eigenvalue, we now have a prodst)¢(6) that solves the PDE and the homoge-
neous boundary conditions. We form the infinite series of these solutions:

u(r,0) = Ao+ i Anr"cogno) (19)
n=1

Finally, we must choose the coefficients so that the function satisfies the nonhomogeneous bound-
ary condition ar = a. That is, we want

u(a,0)=~Ag+ i And"cognb) =g(0) (20)
=1

This says we want the series to be the Fourier cosine serigédorwhich tells us that the coeffi-
cients must be

1 /7 2 (7
ro== [Ca®rde. A== [ g(6)cosne)de @y
8.2.1(a) The differential equation is the heat equation
du | d%
Fri kﬁ (22)
with the boundary conditions
du
u(o,t) = A, &(L,t) =B (23)
and the initial condition
u(x,0) = f(x) (24)
For an equilibrium solutiomig(x), we have
d?u
d_xze =0, SO Ug(X)=Cix+C (25)
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and we can satisfy the boundary conditions veith= B andc, = A. Thus the equilibrium solution
is
Ue(X) = BXx+A. (26)

Now we write
u(X,t) = ue(X) +Ww(x,t) = Bx+A+w(x,t) (27)

Sinceu(x,t) solves the original problem, we have

d(Ue(X) +W(X,1))  3%(Ue(X) +W(x,1))

ot - X2 (28)
which simplies to
ow  J%w
) (29)
smce% 0 anddd Ye — 0. At x = 0 we have
A=u(0,t) = ug(0) + w(0,t) = A+w(0,t), (30)
SO
w(0,t) = 0. (32)
At x =L we have
_du ~ d(Ue+W) _ due ow B ow
8_8_X(L’t) ox (L,t)—W(L)‘F&(L,t)—BﬂL&(LJ), (32)
SO 3
w
&(L,t) =0. (33)
Att =0, we have
(X) = U(x,0) = Ue(X) +W(x,0), (34)
o)
W(x,0) = f(X) — Ue(X) (35)

To summarizew(x,t) satsfies the PDE (29), the homogeneous boundary conditions (31) and (33),
and the initial condition (35)

We solve forw(x,t) with the usual steps of separating variables, solving the appropriate eigen-
value problem, and forming a series solution. The solution is

= Y o (2T Ksin((n—1/2)7x/L) (36)

where
== / — Ue(X))Sin((N— 1/2)7x/L) dx @37)
The solution to the original problem is then
u(x,t) = ue(X) +w(x,t) (38)

Ast — oo, we see thaiv(x,t) — 0, sou(x,t) — Ug(X).
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