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An Example

We begin with the simplest model of population growth. Suppose, for example, a population
increases by 15 percent each year. Let pn be the population at the end of year n, and assume that
p0 is given. Then an increase of 15 percent each year gives

pn+1 = 1.15pn. (1)

If p0 = 100, then p1 = 1.15(100) = 115, p2 = 1.15(115) = 132.3, p3 = 1.15(132.3) = 152.1, and so
on. Table 1 shows the first nine iterations of this process. The data is plotted in Figure 1.

n pn n pn

0 100.0 5 201.1

1 115.0 6 231.3

2 132.3 7 266.0

3 152.1 8 305.9

4 174.9 9 351.8

Table 1: Iteration of the map (1), with p0 = 100.

We derive a formula for pn by noting that

p1 = 1.15p0

p2 = 1.15p1 = (1.15)2p0

p3 = 1.15p2 = (1.15)3p0

...

pn = (1.15)np0

(2)

Thus we have the familiar “exponential growth” of the population.
More generally, the same argument shows that the solution to

pn+1 = apn, (3)
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Figure 1: Plot of the data for the simple population growth model (1). The data is in Table 1.

given p0, is
pn = akp0. (4)

Let’s compare the discrete time map to the continuous time model. Recall that a first order
differential equation that leads to exponential growth (or decay) is

dp

dt
= rp, p(0) = p0, (5)

which has the solution
p(t) = p0e

rt = (er)t p0. (6)

I’ve written the solution as (er)t p0 to make clear the analogy between the continuous solution and
the solution to the discrete model in (4). The term er is analogous to a, and t is analogous to n.

Let’s rewrite (1) as
pn+1 = (1 + 0.15)pn = pn + 0.15pn (7)

or
pn+1 − pn = 0.15pn. (8)

This form of the equation expresses the discrete change in pn as a function of pn. (Such an equation
is often called a difference equation.) Compare this to equation (5), which gives the instantaneous

rate of change of p as a function of p.

One-dimensional Maps

The general one-dimensional map has the form

xn+1 = f(xn), given x0. (9)
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n xn n xn

0 0.1 5 0.6771

1 0.2520 6 0.6122

2 0.5278 7 0.6648

3 0.6978 8 0.6240

4 0.5904 9 0.6570

Table 2: Iteration of the logistic map (10), with r = 2.8 and x0 = 0.1.
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Figure 2: The first several iterates of the logistic map (10) with r = 2.8 and x0 = 0.1. This is a
plot of the data shown in Table 2.

We’ll develop several tools for studying such maps.

“Cobwebbing”: The Graphical Iteration Procedure

There is a simple graphical procedure for generating the iterations of a one-dimensional map. As
an example, we consider the logistic map

xn+1 = rxn(1 − xn) (10)

where r > 0 is a constant. Table 2 shows the first few iterates in the sequence that results when
r = 2.8 and x0 = 0.1. Figure 2 shows the plot of xn as a function of n.

The graphical technique for finding the iterations of this map begins by plotting the graph of
the f(x) = rx(1− x), as in Figure 3 (where r = 2.8). Given x0, we draw a line from the x = x0 on
the x axis up the the graph of x0 to obtain x1. To obtain x2, we need to go to x = x1 on the x axis.
This can be done by drawing a line horizontally from (x0, x1) to the line y = x. See the upper left
plot of Figure 4. To find x2, we again draw a line vertically at x = x1 to the graph, and from the
graph we draw a line horizontally to y = x. See the upper right plot of Figure 4. We continue this
process to generate further iterations, as in the lower left and right plots of Figure 4. In these plots,
I’ve included vertical lines from the x axis up to the graph, but we don’t really need these lines.
In practice, the procedure is: draw a line vertically to the graph, then draw a line horizontally to
y = x, and then repeat the process. An example is shown in Figure 5.
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Figure 3: A graph of the logistic map rx(1 − x) for r = 2.8.
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Figure 4: A sequence of plots that illustrate “cobwebbing”. The initial point is x0 = 0.1.

4



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5: When cobwebbing, we usually don’t bother dropping lines down to the horizontal axis.
After the first vertical line is drawn from (x0, x0) to the graph, we draw a line horizontally to the
line y = x, and then another line vertically to graph, and repeat. This cobweb plot shows the same
data listed in Table 2 and plotted in Figure 2.

Linear Maps

A linear one-dimensional map is
xn+1 = axn (11)

where a is a constant. (The population model (1) is an example.) The solution is

xn = anx0. (12)

Let’s look at how the behavior of the solution depends on a.

1. If a > 1, then an > 0, and an increases without bound as n increases. So xn grows exponen-
tially.

2. If a = 1, then an = 1 for all n, so xn = x0.

3. If 0 < a < 1, then an > 0, and an approaches zero as n increases; xn decays to zero
monotonically.

4. If a = 0, then xn = 0 for all n > 0.

5. If −1 < a < 0, then an alternates sign, and an approaches zero as n increases; xn decays to
zero while alternating sign.

6. If a = −1, then an = (−1)n, which is 1 if n is even and −1 if n is odd. Thus xn alternates
between x0 and −x0.

7. If a < −1, then an alternates sign, and |an| increases without bound as n increases. So xn

alternates sign while |xn| grows exponentially.

Overall, the magnitude of xn grows if |a| > 1, and decays if |a| < 1. Figures 6 and 7 show sample
plots of xn and cobweb diagrams for the various cases.
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Figure 6: Examples of linear maps, a ≥ 0. In all cases, x0 = 10.
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Figure 7: Examples of linear maps, a < 0. In all cases, x0 = 10.
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Fixed Points, Stability, Linearization

A fixed point of the map (9) is a point x∗ where f(x∗) = x∗. If x0 = x∗, then xn = x∗ for all n > 0,
so the fixed points of f are the constant solutions to (9).

In the logistic map shown in Figure 3, we see there are two points where f(x) = x. These are
the points where the graph of f crosses the line y = x. For the example shown in Figure 3, the
graph is f(x) = 2.8x(1 − x), so to find the fixed points, we must solve

2.8x(1 − x) = x =⇒ −2.8x2 + 1.8x = 0 =⇒ x = 0 or x =
1.8

2.8
(13)

So the two fixed points are x = 0 and x = 1.8

2.8
≈ 0.643.

Definition. The fixed point x∗ is a sink or attractor if there is a neighborhood N of x∗ such that
xn → x∗ for all x0 in N . We also say x∗ is asymptotically stable.

Definition. The fixed point x∗ is a source or repellor if there is a neighborhood N of x∗ such
that if x0 is in N , then xn eventually leaves N .

Definition. The fixed point x∗ is unstable if for every neighborhood N of x∗, there are points
arbitrarily close to x∗ whose iterates leave N .

Note that a source is unstable, but an unstable fixed point is not necessarily a source. See, for
example, Figure 10.

Behavior near a fixed point: the linearization. Let x∗ be a fixed point of (9). If x is close
to x∗, we can approximate f(x) with the tangent line at x∗:

f(x) ≈ f(x∗) + f ′(x∗)(x − x∗). (14)

Let un = xn − x∗ (i.e. xn = x∗ + un). Then, by replacing xn with x∗ + un in (9), we obtain

x∗ + un+1 = f(x∗ + un) ≈ f(x∗) + f ′(x∗)un. (15)

Since f(x∗) = x∗, we can cancel x∗ on the left and f(x∗) on the right. We are left with the
linearization of the map at x∗:

un+1 = f ′(x∗)un (16)

This is a linear map. We have already seen how the solution to the linear map depends on a = f ′(x∗);
see Figures 6 and 7. However, the linearization is just an approximation to the actual map (9). The
following theorem tells us when the linear approximation is “good enough” to classify the stability
of the fixed point x∗ of (9).

Theorem 1. (i) If |f ′(x∗)| < 1, then x∗ is a sink. (ii) If |f ′(x∗)| > 1, then x∗ is a source.
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Figure 8: An example that shows why we can not determine the stability of a fixed point based on
the linearization when |f ′(x∗)| = 1. The fixed point is x∗ = 0, and f ′(x∗) = 1. In this case, x∗ is a
source.

Example. Consider again the logistic map (10) with r = 2.8. The graph is shown in Figure 3,
and earlier we found the fixed points to be x∗

1 = 0 and x∗

2 = 1.8

2.8
. We find

f ′(x) = 2.8(1 − 2x). (17)

We use Theorem 1 to determine the stability of the fixed points.

• At x∗

1, we have f ′(0) = 2.8 > 1, so by Theorem 1, x∗

1 is a source.

• At x∗

2, we have f ′(1.8/2.8) = −0.8, so by Theorem 1, x∗

2 is a sink.

If |f ′(x∗)| = 1, we can not make any conclusions about the stability of the fixed point. Examples
demonstrating why this is the case are shown in Figures 8, 9 and 10.
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Figure 9: An example that shows why we can not determine the stability of a fixed point based on
the linearization when |f ′(x∗)| = 1. The fixed point is x∗ = 0, and f ′(x∗) = 1. In this case, x∗ is a
sink.
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Figure 10: Another example that shows why we can not determine the stability of a fixed point
based on the linearization when |f ′(x∗)| = 1. In this case, x∗ = 1/2 is a fixed point, and f ′(x∗) = 1.
The iterations of points close to but less than x∗ converge to x∗, but iterations of points that are
greater than x∗ diverge from x∗. In this case, x∗ is unstable (but it is not a source).

10


