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We introduce second order differential equations, and then discuss the technique of nondimen-
sionalizing a differential equation1.

Second order differential equations. A general form of a second order differential equation is

d2y

dt2
= f

(
t, y,

dy

dt

)
(1)

It is an equation that relates a function to its first and second derivatives. For example,

d2y

dt2
= −3

dy

dt
− 2y (2)

says we want a function y(t) with the property that its second derivative is equal to the given linear
combination of the function and its first derivative for all t. You should verify that y(t) = e−t

satisfies this equation, as does y(t) = e−2t.
A trivial second order differential equation is

d2y

dt2
= 0. (3)

This one we can solve by simply integrating twice2:

dy

dt
= A, y = At + B, (4)

where A and B are constants of integration. y = At + B is a solution for any constants A and B.
For a first order differential equation, we know we need an initial condition y(0) = y0 to determine
the value of the arbitrary constant that shows up in the solution. For a second order differential

1Parts of these notes are based heavily on Chapter 6 of Mathematics Applied to Deterministic Problems in the
Natural Sciences by C. C. Lin and L. A. Segel (SIAM, 1988).

2Note that we can not solve (2) by simply integrating. If we integrate once, we obtain dy
dt

= −3y − 2
∫

y(t)dt.
Since we don’t know what y(t) is (after all, y(t) is what we are trying to find), we can not evaluate

∫
y(t) dt. Except

for trivial cases (such as (3)), integrating both sides of a differential equation transforms it into a new problem, but
does not solve it.
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equation, there are generally two arbitrary constants, so we need two initial conditions: y(0) = y0,
y′(0) = v0. So a general form for a second order initial value problem is

d2y

dt2
= f

(
t, y,

dy

dt

)
y(0) = y0, y′(0) = v0. (5)

(With these initial conditions, you should verify that the solution to the trivial differential equation
d2y
dt2

= 0 is y(t) = v0t + x0.) In problems where y(t) represents the position of an object, y0 is the
initial position, and v0 is the initial velocity.

The projectile problem. We consider the problem of determining the height of an object that is
launched vertically from the surface of the earth with initial speed v0. Let t be the time, measured
from the instant that the object is launched, let x(t) be the height of the object above the surface
of the earth, let g be the gravitational acceleration, and let R be the radius of the earth. Newton’s
laws may be used to derive the following differential equation for x(t):

d2x

dt2
= − gR2

(x + R)2
, x(0) = 0, x′(0) = v0. (6)

If we were going to perform computations with this equation and compare the solutions to actual
experiments, we would need to work with a consistent set of units. For example, we might measure
time in seconds (sec), distance in meters (m), and mass in kilograms (kg). In this case, the units
of g are m/sec2. The quantities time, length and mass are dimensions. For our equation to make
sense, we must measure all dimensions with consistent units. Note that the dimension of a variable
is an inherent property of the variable, but the units are something we can choose. For example, x
is a length, but we might choose meters, miles, or even furlongs for its units. In the following, we
will want to indicate the dimensions of all the variables and parameters in a problem. We’ll use
the symbols L for length, T for time, and M for mass.

The idea is to measure our variables in “units” that are instrinsic to the problem. Units such as
kilometers or miles are arbitrary. The following procedure will let us choose units that can simplify
the problem. Specifically, this procedure usually reduces the number of parameters in the problem.

Procedure for Nondimensionalizing a Differential Equation.

1. List all the variables and parameters along with their dimensions.

2. For each variable, say x, form a product (or quotient) p of parameters that has the same
dimensions as x, and define a new variable y = x/p. y is a “dimensionless” variable. Its
numerical value is the same no matter what system of units is used.

3. Rewrite the differential equation in terms of the new variables.

4. In the new differential equation, group the parameters into nondimensional combinations, and
define a new set of nondimensional parameters expressed as the nondimensional combinations
of the original parameters. (This will typically result in fewer parameters.)

We’ll apply this procedure to the projectile problem, but first we point out an important aspect
of step 3. Time t is one of the variables in the problem (usually we use it as the independent
variable), so in step 2 we will create a nondimensional version of this variable, say τ . Since the
differential equation has derivatives with respect to t, and we want the new equation to be expressed
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Variable or Parameter Meaning Dimension

t time since the launch of the object T
x distance from the surface of the earth L
g gravitational constant LT −2

R radius of the earth L
v0 initial velocity LT −1

Table 1: The list of variables and parameters for the projectile problem, along with their dimensions.
T means time and L means length.

in terms of τ , we will have to use the chain rule to convert from t to τ . Suppose, for example, we
have the dimensional variables t and x(t), and we define nondimensional variables τ = t/T and
y = x/P . How do we express dx

dt and d2x
dt2

in terms of τ and y? First, write y = x/P a little more
carefully as

y(τ) =
x(Tτ)

P
=

x(t)
P

(7)

or
x(t) = Py(t/T ) = Py(τ) (8)

Now take the derivative with respect to t on both sides. We will have to use the chain rule on the
right.

dx(t)
dt

= P
d

dt
(y(τ)) = P

dy

dτ

dτ

dt
=

P

T

dy

dτ
(9)

I included the t and τ arguments in the first few expressions to remind you of what the arguments
of x and y are, but from here on, I will suppress the arguments. The last equality in (9) comes
from dτ

dt = 1/T , since τ = t/T . We also find

d2x

dt2
=

P

T

d2y

dτ2

dτ

dt
=

P

T 2

d2y

dτ2
(10)

Higher derivatives can be found the same way.
Once we understand how this works, we can take advantage of a formal shortcut. To express

dx
dt or d2x

dt2
in terms of τ and y, where t = Tτ and x = Py, simply substitute the variables in the

expression for the derivative:
dx

dt
=

d(Py)
d(Tτ)

=
P

T

dy

dτ
(11)

and
d2x

dt2
=

d2(Py)
d(Tτ)2

=
P

T 2

d2y

dτ2
(12)

This formal procedure seems fishy at first, but it is really just a shortcut for the chain rule.
We’ll now apply the nondimensionalization procedure to the projectile problem.

Step 1. Table 1 shows the result of step 1. (I’ve also included the meaning of each variable and
parameter in the list.)
Step 2. The variable t has dimension T , so we must find a combination of the parameters that also
has dimension T . We see that R/v0 is one such combination. We define

τ =
t

(R/v0)
=

v0t

R
(13)
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The variable x has dimension L, and so does R, so we define

y =
x

R
(14)

Step 3. We now express (6) in terms of the dimensionless variables τ and y. We have t = (R/v0)τ
and x = Ry. Then, by using the shortcut discussed earlier, we have

dx

dt
=

d(Ry)
d ((R/v0)τ)

= v0
dy

dτ
(15)

and
d2x

dt2
=

d2(Ry)
d ((R/v0)τ)2

=
R

(R/v0)2
d2y

dτ2
=

v2
0

R

d2y

dτ2
(16)

Also note that when we substitute x = Ry into the right side of the differential equation in (6), the
R factors in the numerator and denominator cancel. To convert the initial conditions, we use (14)
to obtain y(0) = x(0)/R = 0, and we use (15) to obtain dy

dτ (0) =
(

dx
dt (0)

)
/v0 = 1. The result of all

this is the new equation

v2
0

R

d2y

dτ2
= − g

(y + 1)2
, y(0) = 0, y′(0) = 1 (17)

Step 4. Now we multiply both sides of the differential equation by R/v2
0, and define β as

β =
gR

v2
0

(18)

Note that β is dimensionless. So our final, nondimensional problem is

d2y

dτ2
= − β

(y + 1)2
, y(0) = 0, y′(0) = 1 (19)

Instead of three parameters, we have just one, and everything is dimensionless. This is, in fact, a
general result. When an equation is nondimensionalized, new parameters can be defined such that
the equation depends only on the new parameters, which are all dimensionless.

The fact that the new variables and parameters are all dimensionless means that the equation
does not change if we change our coordinates, say from miles and hours to meters and seconds.
Also, the fact that we ended up with just one parameter means that the original three parameters
(g, R, and v0) did not have independent effects on the behavior. Any combinations of g, R and v0

that result in the same value of β will result in the same behavior of the solution.
Let’s go back and look at step 2 again. We defined y = x/R. This amounts to choosing the

radius of the earth R as our fundamental unit of length. Given the nature of the problem, this is a
“natural” or “intrinsic” length scale, as opposed to miles or meters, which are completely arbitrary.

We also defined τ = t
R/v0

. Is there a natural or intrinsic meaning of R/v0? You may recall that
if an object moves at a constant velocity v0, the distance that it travels in time T is v0T . On the
other hand, if the object travels a distance R with constant velocity v0, the time required is R/v0.
Thus, the “meaning” of R/v0 is the time it would take an object to travel the radius of the earth
if it were moving at the constant speed v0. Unlike seconds or hours, which are arbitrary, R/v0

provides a unit of time that is defined in terms of parameters in the problem; it is an intrinsic time
scale.
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