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In Linear Algebra, you learned how to find the eigenvalues and eigenvectors of matrices. In
these notes, I’ll point out some shortcuts for 2× 2 matrices.

Let

A =
[
a b
c d

]
.

To find the eigenvalues of A, we must solve det(A− λI) = 0 for λ. (The expression det(A− λI) is
called the characteristic polynomial.) We have

det(A− λI) = (a− λ)(d− λ)− bc

= λ2 − (a + d)λ + (ad− bc)

= λ2 − Tr(A)λ + det(A)

where Tr(A) = a + d is the trace of A. (The trace of a square matrix is the sum of the diagonal
elements.) Then the eigenvalues are found by using the quadratic formula, as usual.

Now consider the problem of finding the eigenvectors for the eigenvalues λ1 and λ2. An eigen-
vector associated with λ1 is a nontrivial solution ~v1 to

(A− λ1I)~v = ~0. (1)

Now

A− λ1I =
[
a− λ1 b

c d− λ1

]
The matrix A − λ1I must be singular. That is precisely what makes λ1 an eigenvalue. If a 2 × 2
matrix is singular, the second row must be a multiple of the first row (unless the first row is zero).
Therefore, we know that putting A−λ1I into row echelon form must result in a row of zeros. Since
we know this must be the case, there is no need to actually do it! All we need to find an eigenvector
is the first row. In particular, if ~v = [v1, v2]T, then (1) implies

(a− λ1)v1 + bv2 = 0. (2)

We could solve this for, say, v2 in terms of v1, and give all the possible eigenvectors in terms of the
arbitrary parameter v1. (This is the eigenspace associated with the eigenvalue λ1.) However, for
the purpose of solving a system of differential equations, all we need is one eigenvector. An easy
solution to (2) is v1 = −b and v2 = (a− λ1). Thus (unless (a− λ1) and b both happen to be zero),
once we write down the matrix A− λ1I, we can immediately get the eigenvector

~v1 =
[
−b

a− λ1

]
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If both (a− λ1) and b are zero, we can use the second row to find an eigenvector:

~v1 =
[
d− λ1

−c

]
.

So, once we have an eigenvalue of a 2×2 matrix, it is very easy to find a corresponding eigenvector.
This works even when the eigenvalue is complex. It will give a correct complex eigenvector.

Example 1.

A =
[
1 2
3 −4

]
The characteristic polynomial is

λ2 − (1 + (−4))λ + ((1)(−4)− (2)(3)) = λ2 + 3λ− 10,

so we find

λ =
−3±

√
9− 4(−10)
2

= −5, 2.

Let λ1 = −5 and λ2 = 2. Now we’ll find an eigenvector for each eigenvalue.

λ1 = −5

A− λ1I =
[
6 2
3 1

]
As expected, we see that the second row is a multiple of the first. Using the shortcut discussed
above, we can immediately find one eigenvector to be

~v1 =
[
−2
6

]
Of course, since any nonzero multiple of an eigenvector is also an eigenvector, we could also choose

~v1 =
[
−1
3

]

λ2 = 2

A− λ2I =
[
−1 2
3 −6

]
In this case, a possible eigenvector is

~v2 =
[
−2
−1

]
or, if we want to minimize the number of minus signs,

~v2 =
[
2
1

]
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Example 2.

A =
[
−1 −3
4 3

]
The charateristic polynomial is

λ2 − 2λ + 9,

and the eigenvalues are

λ =
2±

√
4− 36
2

= 1± 2
√
−2 = 1± 2

√
2 i

Let λ1 = 1 + 2
√

2 i, and λ2 = λ∗
1. We’ll find an eigenvector associated with the eigenvalue λ1.

We have

A− λ1I =
[
−1− (1 + 2

√
2 i) −3

4 3− (1 + 2
√

2 i)

]
=

[
−2− 2

√
2 i −3

4 2− 2
√

2 i

]
By using the shortcut discussed above, we can immediately write down the eigenvector

~v1 =
[

3
−2− 2

√
2 i

]
(If we were solving a system of differential equations, we would then want to express ~v1 as

~v1 =
[

3
−2

]
+ i

[
0

−2
√

2

]

so ~a =
[

3
−2

]
and ~b =

[
0

−2
√

2

]
.)

3


