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2.7. Second Order Differential Equations

Recall that the order of a differential equation is the order of the highest de-
rivative in the equation. A general form of a second order differential equation
is

d2y

dt2
= f

(

t, y,
dy

dt

)

(2.58)

It is an equation that relates a function to its first and second derivatives. For
example,

d2y

dt2
= −3

dy

dt
− 2y (2.59)

says we want a function y(t) with the property that its second derivative is equal
to the given linear combination of the function and its first derivative for all t. You
should verify that y(t) = e−t satisfies this equation, as does y(t) = e−2t.

Second order differential equations often arise in models of mechanical systems,
because Newton’s second law of motion relates the acceleration of an object to the
force applied to the object:

F = ma, (2.60)

where F is the forced applied to the object, m is the mass of the object, and a is
the acceleration of the object. For example, in the simplest model of a spring, the
force exerted on a mass suspended on spring is proportional to the displacement
of the object from its rest position. If we choose coordinates y(t) so that y = 0
gives the rest position, the forced exerted on the object by the spring is −ky, where
k > 0 is the spring constant. In this case, Newton’s second law may be written

−ky = m
d2y

dt2
, (2.61)

or, as it is more frequently written,

d2y

dt2
+

k

m
y = 0. (2.62)

This is a second order differential equation for y(t).
A trivial second order differential equation is

d2y

dt2
= 0. (2.63)

This one we can solve by simply integrating twice4:

dy

dt
= A, y = At + B, (2.64)

where A and B are constants of integration. y = At + B is a solution for any
constants A and B. For a first order differential equation, we know we need an initial
condition y(0) = y0 to determine the value of the arbitrary constant that shows up
in the solution. For a second order differential equation, there are generally two

4Note that we can not solve (2.59) by simply integrating. If we integrate once, we obtain
dy

dt
= −3y − 2

R

y(t)dt. Since we don’t know what y(t) is (after all, y(t) is what we are trying

to find), we can not evaluate
R

y(t) dt. Except for trivial cases (such as (2.63)), integrating both

sides of a differential equation transforms it into a new problem, but does not solve it.
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arbitrary constants, so we need two initial conditions: y(0) = y0, y′(0) = v0. So a
general form for a second order initial value problem is

d2y

dt2
= f

(

t, y,
dy

dt

)

y(0) = y0, y′(0) = v0. (2.65)

(With these initial conditions, you should verify that the solution to the trivial

differential equation d2y
dt2 = 0 is y(t) = v0t + x0.) In problems where y(t) represents

the position of an object, y0 is the initial position, and v0 is the initial velocity.
We can always convert an equation such as (2.58) into a system of two first

order equations. Let v(t) = dy
dt ; then dv

dt = d2y
dt2 , and the single second order equation

becomes the system

dy

dt
= v

dv

dt
= f(t, y, v)

(2.66)

(This reinforces the idea that the initial value problem for a second order differential
equations requires two initial conditions. We need starting values for both y(t) and
v(t).)

Example 2.7.1. Consider the second order differential equation

d2y

dy2
+ µ(y2 − 1)

dy

dt
+ ky = 0. (2.67)

We rewrite this equation as a system of two first order equations. Let v = dy
dt ; then

dv

dt
=

d2y

dt2
= −µ(y2 − 1)

dy

dt
− ky. (2.68)

We replace dy
dt with v and obtain the system

dy

dt
= v

dv

dt
= −µ(y2 − 1)v − ky

(2.69)

Exercises

2.7.1. Convert the second order differential equation in (2.59) into a system of
two first order equations.
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2.8. Nondimensionalizing a Differential Equation

An important concept in mathematical modeling is that of dimensionless or
nondimensional variables. In this section, we show how to rewrite a differential
equation in terms of nondimensional variables and parameters. We will use an
example to illustrate the procedure.

The projectile problem. We consider the problem of determining the height
of an object that is launched vertically from the surface of the earth with initial
speed v0. Let t be the time, measured from the instant that the object is launched,
let x(t) be the height of the object above the surface of the earth, let g be the
gravitational acceleration, and let R be the radius of the earth. Newton’s laws may
be used to derive the following differential equation for x(t):

d2x

dt2
= − gR2

(x + R)2
, x(0) = 0, x′(0) = v0. (2.70)

If we were going to perform computations with this equation and compare the
solutions to actual experiments, we would need to work with a consistent set of
units. For example, we might measure time in seconds (sec), distance in meters
(m), and mass in kilograms (kg). In this case, the units of g are m/sec2. The
quantities time, length and mass are dimensions. For our equation to make sense,
we must measure all dimensions with consistent units. Note that the dimension of
a variable is an inherent property of the variable, but the units are something we
can choose. For example, x is a length, but we might choose meters, miles, or even
furlongs for its units. In the following, we will want to indicate the dimensions of
all the variables and parameters in a problem. We’ll use the symbols L for length,
T for time, and M for mass.

The idea is to measure our variables in “units” that are instrinsic to the prob-
lem. Units such as kilometers or miles are arbitrary. The following procedure
will let us choose units that can simplify the problem. Specifically, this procedure
usually reduces the number of parameters in the problem.

Procedure for Nondimensionalizing a Differential Equation.

(1) List all the variables and parameters along with their dimensions.
(2) For each variable, say x, form a product (or quotient) p of parameters

that has the same dimensions as x, and define a new variable y = x/p.
The new variable y is a “dimensionless” variable. Its numerical value is
the same no matter what system of units is used.

(3) Rewrite the differential equation in terms of the new variables.
(4) In the new differential equation, group the parameters into nondimen-

sional combinations, and define a new set of nondimensional parameters
expressed as the nondimensional combinations of the original parameters.
(This will typically result in fewer parameters.)

We’ll apply this procedure to the projectile problem, but first we point out an
important aspect of step 3. Time t is one of the variables in the problem (usually
we use it as the independent variable), so in step 2 we will create a nondimensional
version of this variable, say τ . Since the differential equation has derivatives with
respect to t, and we want the new equation to be expressed in terms of τ , we will
have to use the chain rule to convert from t to τ . Suppose, for example, we have the
dimensional variables t and x(t), and we define nondimensional variables τ = t/T
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Variable or
Parameter

Meaning Dimension

t time since the launch of the object T
x distance from the surface of the earth L
g gravitational constant LT −2

R radius of the earth L
v0 initial velocity LT −1

Table 1. The list of variables and parameters for the projectile
problem, along with their dimensions. T means time and L means
length.

and y = x/P . How do we express dx
dt and d2x

dt2 in terms of τ and y? First, write
y = x/P a little more carefully as

y(τ) =
x(Tτ)

P
=

x(t)

P
(2.71)

or

x(t) = Py(t/T ) = Py(τ) (2.72)

Now take the derivative with respect to t on both sides. We will have to use the
chain rule on the right.

dx(t)

dt
= P

d

dt
(y(τ)) = P

dy

dτ

dτ

dt
=

P

T

dy

dτ
(2.73)

I included the t and τ arguments in the first few expressions to remind you of what
the arguments of x and y are, but from here on, I will suppress the arguments. The
last equality in (2.73) comes from dτ

dt = 1/T , since τ = t/T . We also find

d2x

dt2
=

P

T

d2y

dτ2

dτ

dt
=

P

T 2

d2y

dτ2
(2.74)

Higher derivatives can be found the same way.
Once we understand how this works, we can take advantage of a formal shortcut.

To express dx
dt or d2x

dt2 in terms of τ and y, where t = Tτ and x = Py, simply
substitute the variables in the expression for the derivative:

dx

dt
=

d(Py)

d(Tτ)
=

P

T

dy

dτ
(2.75)

and
d2x

dt2
=

d2(Py)

d(Tτ)2
=

P

T 2

d2y

dτ2
(2.76)

This formal procedure seems fishy at first, but it is really just a shortcut for the
chain rule.

We’ll now apply the nondimensionalization procedure to the projectile problem.

Step 1. Table 1 shows the result of step 1. (I’ve also included the meaning of each
variable and parameter in the list.)

Step 2. The variable t has dimension T , so we must find a combination of the
parameters that also has dimension T . We see that R/v0 is one such combination.
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We define

τ =
t

(R/v0)
=

v0t

R
(2.77)

The variable x has dimension L, and so does R, so we define

y =
x

R
(2.78)

Step 3. We now express (2.70) in terms of the dimensionless variables τ and y. We
have t = (R/v0)τ and x = Ry. Then, by using the shortcut discussed earlier, we
have

dx

dt
=

d(Ry)

d ((R/v0)τ)
= v0

dy

dτ
(2.79)

and
d2x

dt2
=

d2(Ry)

d ((R/v0)τ)2
=

R

(R/v0)2
d2y

dτ2
=

v2
0

R

d2y

dτ2
(2.80)

Also note that when we substitute x = Ry into the right side of the differential
equation in (2.70), the R factors in the numerator and denominator cancel. To
convert the initial conditions, we use (2.78) to obtain y(0) = x(0)/R = 0, and we

use (2.79) to obtain dy
dτ (0) =

(

dx
dt (0)

)

/v0 = 1. The result of all this is the new
equation

v2
0

R

d2y

dτ2
= − g

(y + 1)2
, y(0) = 0, y′(0) = 1 (2.81)

Step 4. Now we multiply both sides of the differential equation by R/v2
0 , and define

β as

β =
gR

v2
0

(2.82)

Note that β is dimensionless. So our final, nondimensional problem is

d2y

dτ2
= − β

(y + 1)2
, y(0) = 0, y′(0) = 1 (2.83)

Instead of three parameters, we have just one, and everything is dimensionless. This
is, in fact, a general result. When an equation is nondimensionalized, new param-
eters can be defined such that the equation depends only on the new parameters,
which are all dimensionless.

The fact that the new variables and parameters are all dimensionless means
that the equation does not change if we change our coordinates, say from miles
and hours to meters and seconds. Also, the fact that we ended up with just one
parameter means that the original three parameters (g, R, and v0) did not have
independent effects on the behavior. Any combinations of g, R and v0 that result
in the same value of β will result in the same behavior of the solution.

Let’s go back and look at step 2 again. We defined y = x/R. This amounts to
choosing the radius of the earth R as our fundamental unit of length. Given the
nature of the problem, this is a “natural” or “intrinsic” length scale, as opposed to
miles or meters, which are completely arbitrary.

We also defined τ = t
R/v0

. Is there a natural or intrinsic meaning of R/v0? You

may recall that if an object moves at a constant velocity v0, the distance that it
travels in time T is v0T . On the other hand, if the object travels a distance R with
constant velocity v0, the time required is R/v0. Thus, the “meaning” of R/v0 is the
time it would take an object to travel the radius of the earth if it were moving at
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Variable or
Parameter

Meaning Dimension

t time T
P size of the population N
r per capita growth rate of a small population T −1

K carrying capacity N
P0 initial size of the population N

Table 2. The list of variables and parameters for the logistic equa-
tion, along with their dimensions. T means time and N means an
amount or quantity.

the constant speed v0. Unlike seconds or hours, which are arbitrary, R/v0 provides
a unit of time that is defined in terms of parameters in the problem; it is an intrinsic
time scale.

Nondimensionalizing the Logistic Equation. Recall the logistic equation:

dP

dt
= r

(

1 − P

K

)

P, P (0) = P0, (2.84)

where r > 0 and K > 0 are constants. We’ll follow the steps outlined above
to nondimensionalize this differential equation. Table 2 lists the variables and
parameters.

To create the nondimensional time variable τ , we must divide t by something
that has the dimension T . The only choice here is 1/r, so we define

τ =
t

(

1
r

) = rt. (2.85)

To create the nondimensional dependent variable y, we must divide P by something
that has the dimension N . We have two choices here, K or P0. I’ll use K, and
leave the choice of P0 as an exercise. We have

y =
P

K
(2.86)

For convenience, we also rewrite the definitions of τ and y as

t =
τ

r
, P = Ky. (2.87)

By the chain rule, we have

dP

dt
=

d(Ky)

d(τ/r)
= rK

dy

dτ
. (2.88)

Then substituting τ and y into (2.84) gives

rK
dy

dτ
= r(1 − y)Ky, y(0) =

P0

K
. (2.89)

In the differential equation, the rK factors cancel, so the only parameters left are
in the initial condition. Note that the fraction P0/K is nondimensional. We define
the new nondimensional initial condition

y0 =
P0

K
(2.90)
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Figure 2.5. The plot of dy
dt as a function of y for the nondimen-

sional logistic equation (2.91).

to arrive at the nondimensional version of the logistic equation:

dy

dτ
= (1 − y)y, y(0) = y0. (2.91)

Now, instead of three parameters, we have just one nondimensional parameter. In
a sense, all versions of the logistic equation (as written in (2.84)) behave the same;
changing r or K simply amounts to changing the units of measurement.

Figure 2.5 shows the plot of (1 − y)y, where we can see that there is a stable
equilibrium at y = 1. Solutions to the nondimensional equation are shown in
Figure 2.6.

How do we interpret the meaning of the nondimensional variables? We defined
y = P/K, so this one is clear. K is a natural unit for the size of the population;
y represents the population as a fraction of the carrying capacity. The carrying
capacity determines an intrinsic unit of measurement for the population.

Can we find a similar interpretation for τ? We formed τ by dividing t by 1/r
because the dimension of 1/r is time. Is there some intrinsic “meaning” to 1/r?
Consider a small population, where P/K � 1. In this case, the differential equation
is approximately

dP

dt
= rP,

and the solution is P (t) = P0e
rt. Then P (1/r) = P0e. Thus we can interpret 1/r

as the time required for a small population to increase by a factor of e. (This unit
of time is similar to the “half-life” of radioactive materials. The half-life is the time
required for a given sample of the material to decay to half of the original amount.)
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Figure 2.6. The plot of solutions to the nondimensional logistic
equation (2.91) for several different initial conditions.
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2.9. Dimensional Analysis and the Buckingham Pi Theorem

In this section we see how dimensional analysis can be used to discover proper-
ties of a system without solving, or even writing down, any differential equations.

2.9.1. Dimensional Homogeneity. We begin with the notion of dimen-
sional homogeneity. An equation is dimensionally homogeneous if it is true re-
gardless of the system of units that is used to measure the parameters or variable
in the equation.

Example 2.9.1. Consider the equation

s =
gt2

2
(2.92)

This is equation for the distance s that an object will fall when released at t = 0
in a constant gravitational field. If we use units of feet for distance and seconds
for time, then g = 32 ft/sec2. Suppose we convert to the units miles and hours for
distance and time, respectively. We use a bar to indicate variables in the new units.
We have s = 5280s̄ (there are 5280 feet per mile), and t = 3600t̄ (3600 seconds
per hour). Finally we express g in the new units: since 1 ft = (1/5280) miles, and
1 sec = (1/3600) hr, we have g = 32 ft/sec2 becomes ḡ = 32(36002/5280) miles/hr2.
Let’s substitute the new variables into (2.92):

5280s̄ =
g (3600t̄)

2

2

s̄ =
36002

5280

gt̄2

2

s̄ =
ḡt̄2

2

(2.93)

The new equation involving s̄, t̄ and ḡ is the same as the original equation. This is
an example of a dimensionally homogeneous equation. �

The power of dimensional analyis is based on the fundamental observation that
equations that arise from physical laws or real-world problems are dimensionally
homogeneous. The number of parameters in such an equation can generally be
reduced, and this can lead to a better understanding of the system being studied.

2.9.2. The Period of a Pendulum. We consider a frictionless pendulum,
as shown in Figure 2.7. Table 3 lists the parameters and their dimensions. (Note
that angles, when expressed in radians, are actually dimensionless.) We consider
an experiment in which we displace the pendulum by an angle θ0, and release it
with no initial velocity. Since we are ignoring friction, we expect the pendulum to
oscillate. This oscillation will have some period T . (The period is the time required
to complete one oscillation.) We would like to know how the period depends on
the other parameters in the problem. First, we’ll try to determine if all these
parameters are really independent. To do this, we’ll try to find all the nontrivial
different ways that they can be combined to form dimensionless products. Our goal
is to find the dimensionless parameters.

Consider the product

π = T albmcgdθe
0 (2.94)
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Figure 2.7. A pendulum of length l, mass m, acted on by gravity,
released from the initial angle θ0 with zero velocity.

Parameter Meaning Dimension

l length of the pendulum L
m mass of the pendulum bob M
g gravitational acceleration LT −2

θ0 initial angle 1
T period of the oscillation T

Table 3. The list of variables and parameters for the pendulum,
along with their dimensions. L means length, M means mass, and
T means time. The initial angle θ0 is dimensionless.

We want to choose a, b, c, d and e so that the new parameter π is dimensionless.
(Note: π is the name of a parameter. We are not using π = 3.1415 . . ..) The
dimensions of π are

T aLbMc
(

LT −2
)d

= T a−2dLb+dMc. (2.95)

We want π to be dimensionless, so we want

a − 2d = 0

b + d = 0

c = 0

(2.96)

This is a linear equation for the unknown a, b, c, and d. Actually, e is also an un-
known, but it only shows up in the exponent of θ0, and θ0 is already dimensionless,
so we know e is arbitrary. It is not difficult to solve the above system of equations,
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but I will still rewrite it in matrix form, and I’ll include e in the system:









1 0 0 −2 0
0 1 0 1 0
0 0 1 0 0
0 0 0 0 0





















a
b
c
d
e













=









0
0
0
0









(2.97)

which we can write more concisely as

A~p = 0 (2.98)

where A is the dimension matrix and ~p is the vector of the powers a, b, c, d, e.
Each nontrivial solution to the linear algebra problem provides a way to combine
the dimensional parameters into a nondimensional product. Note, however, that if

~p = [a, b, c, d, e]
T

is a solution, then so is r [a, b, c, d, e]
T

= [ra, rb, rc, rd, re]
T

for any
constant r. Since

T ralrbmrcgrdθre
0 =

(

T albmcgdθe
0

)r
, (2.99)

multiples of a solution to (2.97) do not really identify new combinations of param-
eters. Thus, all we need is a set of linearly independent solutions to (2.97). (To
use the lingo from linear algebra, we need a basis for the null-space of A.) In this
case, we see that the system (2.97) is already in reduced row echelon form, and the
solution can be written

~p = c1













2
−1
0
1
0













+ c2













0
0
0
0
1













(2.100)

where c1 and c2 are arbitrary. Thus a basis for the null-space of A is given by the
two vectors in the above solution. So one nondimensional parameter is

π1 = T 2l−1m0g1θ0
0 =

gT 2

l
(2.101)

and another (which we already knew) is

π2 = T 0l0m0g0θ1
0 = θ0. (2.102)

Presumably there is some relationship among l, m, g, θ0, and the period T .
We don’t know what it is, so we’ll just assume it can be written in the form

f(T, l, m, g, θ0) = 0, (2.103)

where f is dimensionally homogeneous. The fundamental result that we will now
use is known as the Buckingham Pi Theorem. It says that a dimensionally homo-
geneous relation is equivalent to another relation expressed in terms of only the
independent nondimensional parameters πi. For our example, the Buckingham Pi
Theorem implies that there is a function F for which

F (π1, π2) = 0. (2.104)

Thus it must be possible to express the relation assumed in (2.103) in the simpler
form

F

(

gT 2

l
, θ0

)

= 0. (2.105)
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Equation (2.104) is an implicit relation between π1 and π2. We expect that for
most values of π1 and π2, we can solve for π1 in terms of π2. That is, we can write
(2.104) as

π1 = h(π2) (2.106)

where h is some function. (In principle, the function h exists, but the dimensional
analysis performed here tells us nothing about the nature of h.) Substituting the
formulas for π1 and π2 into (2.106) gives

gT 2

l
= h(θ0), (2.107)

or

T =

√

l

g
h(θ0) =

√

l

g
ĥ(θ0) (2.108)

where ĥ(θ0) =
√

h(θ0). With this result, we can predict how the period of the
oscillation of the pendulum depends on the parameters g and l, without actually
solving (or even writing down) the differential equations that describe the motion.

For example, suppose a pendulum of length l1 has period T1 when released
from angle θ0. If the length is doubled and the pendulum is released from the same
angle, the new period must be

T2 =

√

l2
g

ĥ(θ0) =

√

2l1
g

ĥ(θ0) =
√

2

√

l1
g

ĥ(θ0) =
√

2 T1. (2.109)

Thus, doubling the length should cause the period to increase by a factor of
√

2.
We can also compare the behavior of a pendulum on Earth to its behavior on

Mars. The gravitational constant gM on Mars is roughly one-third that of Earth’s
gravitational consant gE . If, for a given initial angle θ0 and length l, the period of
the oscillation on Earth is 4 seconds, then on Mars the period will be

TM =

√

l

gM
ĥ(θ0) =

√

l

gE/3
ĥ(θ0) =

√
3

√

l

gE
ĥ(θ0) =

√
3 TE =

√
3 4

≈ 6.9 seconds.

(2.110)

2.9.3. Another Example: Periodic Drug Doses. We consider the concen-
tration of a drug in the bloodstream of an individual when the drug is administered
periodically. We’ll look at a simple model that involves both a differential equation
and a discrete map. We’ll also see another example of using dimensional analysis.

Clearing of a Drug from the Bloodstream. There is a variety of mech-
anisms for a drug to be cleared from the bloodstream. Organs in the body may
actively absorb the drug, the drug may react with other chemicals in the blood-
stream, or the drug may naturally breakdown into simpler components. The sim-
plest model of how a drug is cleared from the bloodstream results from assuming
that the rate of loss of the drug is proportional to the concentration of the drug.
If c(t) is the concentration of the drug at time t, the differential equation for this
simple model is

dc

dt
= −rc, (2.111)
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where r > 0 is the proportionality constant that determines the rate of clearance.
We know that the solution to this equation is c(t) = c0e

−rt, where c0 is the con-
centration at time t = 0.

Equation (2.111) is the same as the equation for the decay of radioactive ma-
terials, so we can define the half-life of the drug. This is the time required for the
amount of the drug to be reduced to half the original amount. For example, ac-
cording to an article on Slate by Sam Schechner5 about the poisoning of Ukrainian
president Viktor Yushchenko, some isomers of dioxin have a half-life of more than
seven years. If a drug has a half-life of seven years, then

c(7) = c0e
−7r =

c0

2
, (2.112)

which implies

r =
ln 2

7
≈ 0.0990, (2.113)

where we assumed t was measured in years, and therefore r has the units of years−1.

Question 2.9.1. Suppose a drug has a half-life of seven years. (a) How long
will it take for the amount of the drug to be reduced to one-quarter of the original
amount? (b) How long will it take to be reduced to one percent of the original
amount?

Answers: (a) 14 years, (b) 46.5 years.

Administering a Drug with Periodic Doses. We now suppose that a drug
is administered periodically. That is, every h time units, a dose is administered
that increases the concentration by b. (If the amount administered is a, and the
volume of the blood in bloodstream is V , then b = a/V . We will work with b
from here on.) We assume that the dose causes an instantaneous increase in the
concentration. This is probably a good assumption for a drug administered by
an injection. Whether this is a good assumption for a drug taken orally depends
on the properties of the drug. Alcohol, for example, enters the bloodstream fairly
rapidly, so the instantaneous increase in concentration is probably a reasonable
approximation for alcohol.

We assume that the first dose is administered at time t = 0, and the concentra-
tion of the drug in the bloodstream before then is zero. At t = 0 the concentration
jumps to b, and then for 0 < t < h, the concentration decays according to (2.111).
At t = h, another dose is administered, and the concentration increases by b. The
concentration then decays for h < t < 2h, and the process continues. We expect
the plot of the concentration to look like the graph shown in Figure 2.8.

Let xn be the concentration at the moment before a new dose is administered.
It is clear the graph of c(t) will consists of periods of decay, separated by jumps.
What we would like to know is what happens to xn as n increases? Does xn increase
without bound? Or does xn approach some value asymptotically? If so, what value
does is approach?

Dimensional Analysis of x∞x∞x∞. We’ll find the exact formula for xn in the
next section. In this section, we assume that xn approaches a finite value x∞

asymptotically as n → ∞. We use dimensional analysis to determine (as far as
possible) how x∞ depends on the other parameters.

5http://slate.msn.com/id/2110979/, Dec. 13, 2004
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Figure 2.8. A plot of the concentration c(t) for a drug admin-
istered periodically. In this example, r = 0.3, h = 2 and b = 1.
At t = 0, h, 2h, . . ., c(t) increases by b; otherwise the concentration
decays according to (2.111).

Parameter Meaning Dimension

r proportionality constant for the clearance of the drug T −1

h time period T
b instantaneous change in concentration due to each dose C

x∞ asymptotic concentration just before the next dose C
Table 4. The list of variables and parameters along with their
dimensions. T means time and C means a concentration. (In a
problem with a wider variety of parameters, we might want to
express concentration as an amount A divided by a volume V or
even divided by the cube of a length L, but this is not necessary
in this case.)

We use the procedure that we saw for the period of the pendulum in an earlier
lecture. Our first task is to find all the independent nondimensional parameters. We
list all the relevant parameters along with their dimensions in Table 4. We see that
π1 = rh and π2 = x∞/b are nondimensional combinations of the parameters. With
a little thought, we could probably convince ourselves that these are the only non-
trivial (or independent) combinations. (For example, rhb2/x2

∞
is nondimensional,

but it is equivalent to π1/π2
2 , so it is not really a “new” parameter.) However, for

the sake of pedagogy, we will follow the formal procedure, and pretend we didn’t
see the “obvious” choices.
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We must choose exponents α, β, γ and δ such that

π = rαbβhγxδ
∞

(2.114)

is dimensionless. Substituting in the dimensions from Table 4, we require
(

T −1
)α CβT γCδ = T 0C0 = 1 =⇒ T −α+γCβ+δ = T 0C0. (2.115)

This results in the linear system of equations

−α + γ = 0,

β + δ = 0. (2.116)

This is easy enough to solve: α = γ and β = −δ, where γ and δ are arbitrary.
Equivalently, we can express this as

α = p, β = −q, γ = p, δ = q, (2.117)

where p and q are arbitrary parameters. In vector form,








α
β
γ
δ









=









p
−q
p
q









= p









1
0
1
0









+ q









0
−1
0
1









. (2.118)

A basis for the solution set of (2.116) is given by the vectors {[1, 0, 1, 0], [0,−1, 0, 1]}
(written as row vectors for convenience). Each basis vector gives us exponents that
we can plug into (2.114) to form a nondimensional parameter. Thus we have found
(as expected) that there are only two independent nondimensional parameters:

π1 = r1b0h1x0
∞

= rh, and π2 = r0b−1h0x1
∞

=
x∞

b
. (2.119)

Now we assume that there is some functional relationship among r, h, b and
x∞. Since we don’t know what it is, we’ll assume the general form

f(r, h, b, x∞) = 0. (2.120)

We expect f to be dimensionally homogeneous; then the Buckingham Pi Theorem
implies that there is an equivalent relationship of the form

F (π1, π2) = 0. (2.121)

Moreover, we expect that for most values of π1 and π2, this equation can be solved
for π2 in terms of π1. That is, there is some function G such that (2.121) is
equivalent to

π2 = G(π1). (2.122)

Subsituting in the definitions of π1 and π2 gives
x∞

b
= G(rh), (2.123)

or
x∞ = bG(rh). (2.124)

This gives us the form of the equation that will result if we can solve for x∞ in
terms of r, h and b. That is, x∞ must be a product of b and some function of rh
only.

This problem is actually simple enough that we can solve for x∞ exactly. In
the steady-state behavior of c(t), the decrease in the concentration during the time
interval between doses must be exactly b. For convenience, let us shift our time axis
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so that the concentration has just jumped to cmax at t = 0. Then c(h) = cmaxe
−rh,

and the change in the concentration is

c(0) − c(h) = cmax − cmaxe
−rh = cmax(1 − e−rh). (2.125)

This must equal b:

cmax(1 − e−rh) = b =⇒ cmax =
b

1 − e−rh
(2.126)

Finally, since x∞ is the concentration at the end of the h time interval (just before
the next dose), we have

x∞ = cmax − b =
be−rh

1 − e−rh
. (2.127)

As expected, the formula has the form bG(rh). In this case, G(u) = e−u

1−e−u
.

Derivation of the Formula for xnxnxn. In this section,6 we derive the actual
formula for xn. You may find it helpful to label the plot in Figure 2.8 using the
notation from the following discussion.

We need some additional notation to describe the graph shown in the figure.
Let

c(h−) = lim
t→h−

c(t) (the limit from below),

c(h+) = lim
t→h+

c(t) (the limit from above).
(2.128)

and define

xn = c((nh)−). (2.129)

The instant after the first dose, we have

c(0+) = b. (2.130)

Then, for 0 < t < h, we have c(t) = be−rt, so

c(h−) = be−rh. (2.131)

At t = h, the concentration increases by b, so

c(h+) = c(h−) + b = be−rh + b = b
(

e−rh + 1
)

(2.132)

Then in the next interval, the solution again decays, and we have

c((2h)−) = c(h+)e−rh = b
(

e−rh + 1
)

e−rh = b
(

e−2rh + e−rh
)

(2.133)

and after the jump at t = 2h we have

c((2h)+) = c((2h)−) + b = b
(

e−2rh + e−rh
)

+ b = b
(

e−2rh + e−rh + 1
)

(2.134)

Once again, in the next time interval, the solution decays and we have

c((3h)−) = c((2h)+)e−rh = b
(

e−2rh + e−rh + 1
)

e−rh = b
(

e−3rh + e−2rh + e−rh
)

(2.135)
Recall that we defined xn = c((nh)−). The process that we are describing defines
a one dimensional mapping

xn+1 = (xn + b)e−rh, with x0 = 0. (2.136)

6This section is not an integral part of the discussion of dimensional analysis.
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Figure 2.9. The graph of c(t) for r = 0.3, h = 2, and b = 1. The
dashed line shows x∞ ≈ 1.2164.

Equations (2.131), (2.133) and (2.135) give the formulas for the first three iterations
of this map. In general, we have

xn = c((nh)−) = b
(

e−nrh + e−(n−1)rh + · · · + e−rh
)

= b

n
∑

k=1

e−krh = b

n
∑

k=1

ρk,

(2.137)
where ρ = e−rh. (Note that, since r > 0 and h > 0, we have 0 < ρ < 1.) The
formula in Equation (2.137) is a geometric sum. By using Equation (A.6) from the
appendix, we obtain

xn = bρ

(

1 − ρn

1 − ρ

)

= be−rh

(

1 − e−nrh

1 − e−rh

)

(2.138)

Finally, since lim
n→∞

ρn = 0, we have

x∞ =
bρ

1 − ρ
=

be−rh

1 − e−rh
. (2.139)

The example shown earlier was for r = 0.3, h = 2 and b = 1. With these
values we find x∞ ≈ 1.2164. Figure 2.9 shows the result of ten periods for these
parameters. The dashed line in this plot indicates x∞.
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Exercises

2.9.1. Find a set of independent nondimensional parameters for the following
dimensional parameters. The dimension of each parameter is given in parentheses.

` (L), r (T −1), g (LT −2), m (M), P (ML−1T −2)


