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2.6. Interacting Populations and SI Model of Epidemiology

In this section we consider a model of the spread of a disease. This model
illustrates a common method of modeling the interaction of two populations.

The SI Model. We consider the spread of a disease in a population. (The
model will be the same if, instead of a disease, we imagine the spread of a rumor
or a joke.) To develop a set of differential equations that model the spread of the
disease, we must make some assumptions:

(1) The size of the population, N , remains fixed.
(2) The size of the population is large enough that the error made by ap-

proximating 1/(N − 1) with 1/N is small. (As a percentage, this error is
100/N , so, for example, when N = 10000, the error is 0.01 percent.)

(3) We consider just two classes of individuals: those who have the disease and
are infective, and those who do not have the disease but are susceptible to
it. Each individual is in one of these two classes. (In this model, no one
is immune, and once an individual has the disease, the individual remains
infective.)

(4) We assume that the disease spreads through interactions between pairs
of individuals, and these interactions are random. (Our model will not
attempt to deal with the geographic spread of the disease. It will only
look at the total number of individuals infected within the given pop-
ulation.) An interaction is modeled as making a random selection of
two individuals from the population. If one is susceptible and one is in-
fected, the susceptible might become infected. We let c be the fraction of
susceptible-infective (SI) interactions that actually result in the spread of
the disease (0 < c ≤ 1). (We can think of the units of c as the average
number of infections per SI interaction.)

(5) The rate of interactions within the population is constant. We let γ be
the interaction rate, with units of number of interactions per unit time.

Let I(t) be the number of infectives at time t, and let S(t) be the number of
individuals who are susceptible. By assumptions (1) and (3), we have

S + I = N. (2.44)

Given an initial number of infectives I(0), we would like to know what will happen
to I(t). We will use the assumptions to formulate differential equations that model
this process.

If we pick two people at random from the population, what is the probabil-
ity that one is susceptible and the other is infected? The probability of picking
a susceptible person is S/N , and the probability of picking an infective is I/N .
(Assumption (2) allows us to assume that these events are independents. If we
really chose a susceptible with our first random selection, then the probability that
the second individual will be an infective is I/(N − 1). Since N is large, we can
approximate this by I/N .) The probability that two random people will consist of
one susceptible and one infected is
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SI. (2.45)

This expression gives the average number of SI interactions per interaction. By
assumption (5), the quantity 2γ

N2 SI gives the average number of SI interactions per
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unit time, and then by assumption (4), the average number of infections per unit
time is

2cγ

N2
SI. (2.46)

This quantity determines the rate at which I(t) is increasing. For convenience, let

r =
2cγ

N2
(2.47)

Then the equation for I(t) is
dI

dt
= rSI. (2.48)

We have just two classes of individuals, the infectives and the susceptible, so any
gain in I must result in an equal loss in S. Thus

dS

dt
= −rSI. (2.49)

Equations (2.48) and (2.49) constitute a system of differential equations. Many
dynamical processes are modeled with systems of differential equations; we’ll see
many more in this course. In fact, this is a nonlinear system. Typically, nonlinear
systems that arise in the real world can not be solved analytically. It turns out that
this particular system can be solved.

First, we check that the total population remains constant by adding these two
equations. We find

dS

dt
+

dI

dt
= 0 (2.50)

and integrating from 0 to t gives

S(t) + I(t) = S(0) + I(0). (2.51)

The initial population was N , so we have S(t) + I(t) = N . This means we can
replace S in (2.48) with N − I to obtain

dI

dt
= r(N − I)I. (2.52)

This is just another version of the logistic equation, with carrying capacity N . If
I(0) > 0, I(t) will approach the equilibrium N as t → ∞. Thus, this simple model
predicts that eventually everyone will become infected, no matter how small the
initial population of infectives.

Many models of physical, social, or biological systems involve interacting pop-
ulations. We consider another example, in which we model the interaction of a
predator and its prey.

A Predator/Prey Model. Let x(t) be the population of, say, mice in a forest,
and let y(t) be the population of foxes. Suppose that the mice are an essential
component of the foxes diet; without mice, the foxes will eventually starve. That
is, we assume that when there are no mice, the differential equation for the fox
population is

dy

dt
= −µy (2.53)

where µ > 0.
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We also assume that, in the absence of foxes, the mice population grows ac-
cording to a logistic equation:

dx

dt
= rx

(

1 − x

K

)

(2.54)

where r is the small population per capita growth rate of the mouse population and
K is the carrying capacity of the mouse population (in the absence of foxes).

We model the interaction of these populations with assumptions similar to
those of the SI model. (However, in this case the total size of the population does
not remain constant.) In particular, the rate of interactions between mice and foxes
is proportional to the product of the populations. We modify equations (2.53) and
(2.54) as follows:

dx

dt
= rx

(

1 − x

K

)

− k1xy

dy

dt
= −µy + k2xy

(2.55)

The constants k1 > 0 and k2 > 0 determine how the interactions affect the
mouse and fox populations, respectively. Since the foxes eat the mice, interactions
results in a loss for dx

dt . The foxes, on the other hand, benefit from the interaction.
Unlike the SI model, the cofficients k1 and k2 are not equal; we do not assume that
each mouse is converted to a fox one-for-one. The parameter k2 determines how
much benefit results from a fox capturing a mouse. For example, if k2 is small,
the foxes each have to catch many mice in order to improve the growth rate by a
significant amount.

We can interpret these equations in terms of the per capita growth rates of the
mice and foxes. For the mice, the per capita growth rate is

r
(

1 − x

K

)

− k1y, (2.56)

and we see that increasing y lowers the per capita growth rate of the mice. The
per capita growth rate of the foxes is

−µ + k2x. (2.57)

This shows that in order for the fox population to grow, the mouse population must
be larger than µ/k2.

Unlike the SI model, we can not reduce the system of differential equations
(2.55) to a single equation. We will learn more about the analysis of systems of
differential equations in later chapters.


