Homework 6

Due Friday, March 31

1. Consider the nonlinear system

$$
\begin{aligned}
& \frac{d x}{d t}=x(1-x-y) \\
& \frac{d y}{d t}=y(3-2 x-y)
\end{aligned}
$$

In the following, do not assume x and y must be positive.
(a) Find all the equilibrium points.
(b) Find the linearization at each equilibrium, classify the equilibrium point, and sketch the phase portrait for the linearized system.
(c) Sketch the phase portrait for the nonlinear system. Follow these steps:
i. Mark the locations of the equilibrium points.
ii. Sketch the nullclines (the curves where $\frac{d x}{d t}=0$ or $\frac{d y}{d t}=0$), and in the regions bounded by the nullclines, indicate the sign of $\frac{d x}{d t}$ and $\frac{d y}{d t}$.
iii. Near each equilibrium point, copy the the phase portait from part (b) to indicate the local behavior determined by the linear approximation.
(d) Suppose x and y represent two species that are competing for a common resource. If $x(0)>0$ and $y(0)>0$, what will happen to the populations of the species in the long term?
2. Exercise 4.2.2 from the handout "Chapter 4: Linear Discrete Maps".
3. Exercise 4.3.3 from the handout "Chapter 4: Linear Discrete Maps".

