(3) In the process of creating the map, the students exercise
in a systematic manner problems in the whole domain
and get an overview of all the material that they have
learned. Thus the unit can also serve as part of a review
that teachers normally perform at the end of a course.

Considering the fact that the time spent by students in the
experimental and the comparison groups was about the same,
it is recommended to adopt the integrative approach that can
lead to considerable gains in learning with relatively little
investment of time.
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We consider a ball rolling on a freely spinning turntable. We show that the path of the ball (in an
inertial frame) is a conic section. This generalizes the well-known problem of a ball rolling on a
turntable that is spinning with constant angular velocity, for which the path is a circle. © 1997

American Association of Physics Teachers.

L INTRODUCTION

In this article we consider a variation of the intriguing
problem of a ball rolling on a turntable. (See Fig. 1.) We
show that the path of a ball rolling on a freely spinning
turntable is a conic section.

When the turntable rotates at a constant angular velocity
(rather than spinning freely), it is surprisingly easy to show
that the path of the ball is a circle. Discussions of this prob-
lem have appeared several times in this journal.l‘7 Related
problems can be found in several texts on classical mechan-
ics; see, for example, Routh,? Gray,9 or Milne.'” The text by
Milne contains a rich collection of problems related to roll-
ing spheres'® (pp. 351-365).

The problem is an example of a nonholonomic system, the
theory of which can be found in the monograph of Neimark
and Fufaev.!! Moreover, this system has several symmetries.
In a holonomic system, such symmetries would result in con-
served quantities by Noether’s theorem. Symmetries in non-
holonomic systems, however, do not necessarily lead to con-
served quantities. A discussion of symmetries and conserved
quantities in nonholonomic systems can be found in the text
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by Arnold er al.'> (pp. 82-84). The reduction of nonholo-
nomic slystems with symmetry is an active area of
research.'3-16

The ball on a freely spinning turntable has three conserved
quantities: the total energy, the angular momentum about the
z axis, and the z component of the angular momentum of the
ball. These will be used to find the path of the ball.

Fig. 1. A ball rolling on a freely spinning turntable. The xyz coordinate
system is fixed in space, not on the turntable.
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II. EQUATIONS OF MOTION

We derive the equations of motion in an inertial frame
with the origin at the axis of rotation of the turntable, as
shown in Fig. 1. For convenience, we list here the symbols
used in the derivation:

i,j.k unit vectors parallel to the x,
y and z directions, respectively

m,a,l, mass, radius, and moment of
inertia of the ball

1, moment of inertia of the turntable
about the z axis

t* time

point of contact of the ball on the
turntable

reaction force acting on the ball at
the point of contact

angular velocity of the ball
angular velocity of the turntable

r*=x*i+y*j
=+

= w¥it oFit+ o*
o*=wfitojt o’k
Q*k

The asterisks are used to indicate dimensional variables.
We use a dot to indicate a derivative with respect to r*.

We begin our derivation of the equations of motion with
Newton’s second law for the motion of the center of mass of
the ball. The force due to gravity is balanced by the vertical
force of the turntable on the ball, so the net force on the ball
is f*. Thus

mr*=f*, (1

Now we consider the moment balance around the center of
the ball:

I,0* = —akxf*. )

The only forces acting on the ball are in the xy plane at the
point of contact, so the moment about the center of the ball
has no z component. Thus @}, the z component of the ball’s
angular velocity, is constant.

We are assuming that the ball rolls on the turntable with-
out slipping. This means that the velocity of the point on the
ball that is in contact with the turntable must equal the ve-
locity of the point on the turntable that is in contact with the
ball. Thus

r*+akXw*=Q*kxr*. 3)

The last fundamental equation comes from the moment
balance of the turntable:

1,0%k= —r*xf*, (4)

In subsequent calculations, it proves convenient to use

nondimensional variables. Let W=Q*(0). We make the fol-
lowing definitions:

t=Wr*, r(t)= r*(t*), f(r)= f*(t*l
a maW*’
*( ok (%

(t)= wv(vt ) om=2 vg )
The nondimensional versions of Egs. (1)—(4) are

r'=f, (5)

Bw' = —kxf, (6)

r' +kxw=Qkxr, (7N
and

80 k= —rxf, (8)
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where B=1I,/ma?, 6=1I,/ma*, and a prime (') denotes a
derivative with respect to 2.

Our goal now is to eliminate f and e, and obtain a set of
equations for r and () only. By eliminating f from (5) and (6)
we obtain

r'=pBkXo'. 9

Integrate this from 0 to ¢, and use the no-slip constraint (7) to
eliminate kX w. The result is

r=aQkxr+c, (10)

where a=B/(B+1) and e=r'(0)— akXr(0).

Suppose now that the turntable spins at a constant rate. By
our choice of variables, this means that {3(z)=1 for all z. In
this case, Eq. (10) is the equation for a simple harmonic
oscillator written as a first-order system. Thus we have the
surprising result that the path of the ball is a circle. The
center of the path is r.=kXc/a=kxr'(0)/a+r(0). Let
r(0)=Xi+ Yj and r'(0) = Ui+ Vj. Then the equation for the
circle is

(x—X+VIa)+(y—Y—Ula)?’=(U*+V%H/a?. (11

In the problem we are considering, however, {} is not con-
stant. We find the equation for {) by using (5), (6), and (10)
to eliminate f from (8). The result is

Q=29 o 12
" Sta(rr) (12)
Notice that if (z,)=0 for some t,, then £2(+)=0 for all
t. We have assumed that 2(0)=1; therefore we conclude
that Q(#)>0 for all ¢. It is impossible for the turntable to
reverse the direction of its spin.

III. SOLUTION USING CONSERVED QUANTITIES

We use the conservation of energy and angular momen-
tum to determine the path of the ball. We find that the path of
the ball is a conic section; that is, the path is given by a
quadratic equation in x and y.

Define the product aab of two vectors in the xy plane to
be

arb=k-(axb).
The total (nondimensional) angular momentum u about the
Z axis 1s

u=06Q+(rar')+Bw,.
There are no external torques about the z axis of the system,

so um is constant. We showed earlier that w, is constant;
therefore

L=5Q+ (rar")
is also constant. By using this equation and (10) we obtain
Q- L—(rac)
St atrn) (13)

No work is done on the system, and the internal constraint
force f does no work. Therefore the kinetic energy K
=300°+ jB(w-w)+5(r'-r’) is also conserved. Let e,
=w, it wyj, 80 W=, + o k. Because w, is constant,

—_ 1502, 1
T=360"+;:8(w, w,)+ Hr'r')

is also constant.
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The no-slip constraint (7) can be used to express @, in
terms of r and r. From (7) and (10) we obtain

w,=(1-a)Qr+kxc. (14)
Now use (10), (13), and (14) to eliminate e,, r’, and ()

from the expression for the kinetic energy. We arrive at the
following equation satisfied by r=xi+ yj:

Ax?’+Bxy+Cy?’+Dx+Ey=F, (15)
where

A=2aT—(Bci+(B+1)cd), B=2cc,,

C=2aT—((B+1)c}+Bc?), D=2Lc,,

E=—2Lc,, F=L?-26T+8(c3+c)(B+1),

and ¢ and ¢, are the components of ¢. In terms of the initial
conditions x(0)=X, y(0)=Y, x'(0)=U, y’(0)=V, and
Q(0)=1, we have

c;=U+aY, c,=V—aX,

L=8+(XV-YU),

T=1316+3B0C+Y*=2(XV-YU)+ U*+V?)

+ 35U+ V).

Several special cases are considered in the following ex-
amples.

Example 1: We expect that when the moment of inertia of
the turntable is large (i.e., when & is large), the behavior of
the system should approach that of the case where the turn-
table spins at a constant angular velocity. Indeed, by dividing
(15) by aé and taking the limit —, we obtain (11), the
equation of the circular path of the ball. A natural question to
ask is whether circular motion is possible when 6<<«. For
circular motion, we must have A=C and B=0 in Eq. (15). It
follows that ¢, =c¢,=0. In this case, Eq. (15) simplifies to

x2+yr=X2+7Y?,
so the ball travels in a circle around the origin. From ¢=0
we can also deduce this directly from the equations of mo-
tion (10) and (12). In Eq. (12) we see that )’ is zero, so
Q(r)=1 for all z. Then Eq. (10) shows that the ball travels
in a circle about the origin with speed a.

Example 2: Consider a ball initially at the origin and mov-
ing in the x direction, so X=0, Y=0, and V=0. The result-
ing equation for the path of the ball is

adx®+(ad- U?)y?—28Uy=0.

If U?=ad, the ball travels along the parabola y
=1J(a/6)x*. Otherwise, we can rewrite the equation as

ad 8U \? sU \?
——3 |+ | y— 7] = 7
ad—U ad—-U ad—U

When U?> a4, the ball rolls away from the origin along a
hyperbola. If U?< a8, the ball travels along an ellipse, pe-
riodically returning to the origin.

Example 3: We now ask what happens when the ball ini-
tially has no translational velocity, so U=V =0. In this case,
Eq. (15) simplifies to

S((x—X)2+(y—Y)?) +a(Yx—Xy)*=0,
so the ball remains spinning in place at x=X and y=Y. This
can also be deduced from the equations of motion (10) and
(12), for when ¢;=aY and ¢,=—aX, both Q'(0) and
r’'(0) are zero.
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IV. SOME FINAL REMARKS

In Part V of their paper, Gersten, Soodak, and Tiersten*
constructed a problem in which the paths of the ball were
also conic sections. They imagined the turntable to be com-
posed of a set of concentric rings of infinitesimal widths,
with the ring of radius r rotating at the constant rate ((r).
They showed that when (r)=b/(ar) (where b is a con-
stant with the dimension of speed), the path of the ball is a
conic section. The ball rolling on a freely spinning turntable
provides a more realistic mechanical system for which the
paths are also conic sections.

The relationship between the case where the turntable
spins at a constant angular velocity and the freely spinning
case is the same as that described by Kaplan.!” He compares
the system of a bead sliding in a circular wire spinning with
constant angular velocity to a system in which the wire can
spin freely. As he points out, there are many systems for
which this type of comparison is useful.

Many of the algebraic manipulations required to derive the
path of the ball given by Eq. (15) were done using the soft-
ware package MAPLE. Doing these manipulations entirely by
hand would have been tedious, and it is likely that the simple
geometry of the result would have remained obscured. On
the other hand, the simple geometry of the paths hints that
there may be a simpler (or at least more geometric) deriva-
tion of these results; perhaps some reader will discover such
a derivation.
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