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The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations∗
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Abstract. The forced van der Pol oscillator has been the focus of scientific scrutiny for almost a century, yet
its global bifurcation structure is still poorly understood. In this paper, we present a hybrid system
consisting of the dynamics of the trajectories on the slow manifold coupled with “jumps” at the
folds in the critical manifold to approximate the fast subsystem. The global bifurcations of the fixed
points and periodic points of this hybrid system lead to an understanding of the bifurcations in the
periodic orbits (without canards) of the forced van der Pol system.
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1. Introduction. During the first half of the twentieth century, Balthazar van der Pol
pioneered the fields of radio and telecommunications [6, 7, 29, 32, 33, 34]. In an era when
these areas were much less advanced than they are today, vacuum tubes were used to control
the flow of electricity in the circuitry of transmitters and receivers. Contemporary with Lorenz,
Thompson, and Appleton, van der Pol experimented with oscillations in a vacuum tube triode
circuit and concluded that all initial conditions converged to the same periodic orbit of finite
amplitude. Since this behavior is different from the behavior of solutions of linear equations,
van der Pol proposed a nonlinear differential equation

x′′ + µ(x2 − 1)x′ + x = 0,(1.1)

commonly referred to as the (unforced) van der Pol equation [32], as a model for the behavior
observed in the experiment. In studying the case µ � 1, van der Pol discovered the importance
of what has become known as relaxation oscillations [33]. These oscillations have become the
cornerstone of geometric singular perturbation theory and play a significant role in the analysis
presented here. Van der Pol went on to propose a version of (1.1) that includes a periodic
forcing term:

x′′ + µ(x2 − 1)x′ + x = a sin(2πντ).(1.2)

In a similar equation, he and van der Mark first noted the existence of two stable periodic
solutions with different periods for a particular value of the parameters and observed noisy
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behavior in an electrical circuit modeled with (1.2) [35]. Van der Pol further speculated that
(1.2) also had this property.

Van der Pol’s work on nonlinear oscillations and circuit theory provided motivation for
the seminal work of Cartwright and Littlewood [22]. In 1938, just prior to World War II,
the British Radio Research Board issued a request for mathematicians to consider the differ-
ential equations that arise in radio engineering. Responding to this request, Cartwright and
Littlewood began studying the forced van der Pol equation and showed that it does indeed
have bistable parameter regimes. In addition, they showed that there does not exist a smooth
boundary between the basins of attraction of the stable periodic orbits. They discovered what
is now called chaotic dynamics by detailed investigation of this system [7, 8, 9, 20, 21].

Since its introduction in the 1920’s, the van der Pol equation has been a prototype for
systems with self-excited limit cycle oscillations. The equation has been studied over wide
parameter regimes, from perturbations of harmonic motion to relaxation oscillations. It has
been used by scientists to model a variety of physical and biological phenomena. For instance,
in biology, the van der Pol equation has been used as the basis of a model of coupled neurons
in the gastric mill circuit of the stomatogastric ganglion [15, 26]. The Fitzhugh–Nagumo
equation [12] is a planar vector field that extends the van der Pol equation as a model for
action potentials of neurons [18]. In seismology, the van der Pol equation has been used in
the development a model of the interaction of two plates in a geological fault [5].

Despite the continuing work of many scientists and mathematicians (see [13, 16, 17, 19,
26, 28, 30, 31], for example), bifurcations of this system have been studied little. This paper
is the first in a series that seeks to give a thorough analysis of the dynamics inherent in the
forced van der Pol equation in the relaxation regime. Here we focus upon a two-dimensional
reduced system derived from the forced van der Pol equation, classifying the bifurcations of
the simplest periodic orbits in this reduced system.

2. Fast subsystems and the slow flow. We begin by setting notation and defining the
fast subsystems and slow flow of the forced van der Pol equation. First, we change variables
to express (1.2) in a more convenient form by rescaling time t = τ/µ, so x′ → ẋ/µ and
x′′ → ẍ/µ2, where ẋ ≡ dx/dt. By defining y = ẋ/µ2 + x3/3 − x, we transform (1.2) into the
system

1

µ2
ẋ = y − x3

3
+ x,

ẏ = −x+ a sin(2πνµt).

Defining new parameters ε = 1/µ2 and ω = νµ and converting these equations into an
autonomous system by defining θ = ωt, we obtain the system

εẋ = y + x− x3

3
,

ẏ = −x+ a sin(2πθ),

θ̇ = ω

(2.1)
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as a vector field on R
2 × S1. We regard S1 = R/Z and use coordinates [0, 1] for S1, under-

standing that the endpoints are identified. We also use the system in the form

dx

ds
= y + x− x3

3
,

dy

ds
= ε(−x+ a sin(2πθ)),

dθ

ds
= εω,

(2.2)

obtained by rescaling time by s = εt. In the relaxation regime, namely, ε � 1, these equations
can be analyzed using singular perturbation theory [14]. The variable x is commonly referred
to as the fast variable, and the variables y and θ are the slow variables. Exploiting the two
time scales in (2.1) and (2.2), trajectories are decomposed into fast and slow segments. This
decomposition is achieved by considering the dynamics of the singular limit ε = 0 in (2.1)
and (2.2).

The limit ε = 0 in (2.2) results in the family of fast subsystems. For each y and θ, the fast
subsystem is a one-dimensional differential equation for x, with y and θ acting as parameters.
If |y| > 2/3, there is a single stable equilibrium, and if |y| < 2/3, there are two stable and
one unstable equilibria of the fast subsystem. The forward limit of each trajectory is one
of the stable equilibria. The singular limit ε = 0 of (2.1) results in a differential algebraic
equation. The first equation in (2.1) becomes y = x3/3− x, which defines a two-dimensional
manifold called the critical manifold. The critical manifold is the union of equilibria of the
fast subsystems. The remaining two equations of (2.1) define implicitly a vector field on the
critical manifold at regular points of its projection onto the (y, θ) coordinate plane. This
vector field on the critical manifold is called the slow flow of the system. We call the pieces
of the critical manifold composed of stable equilibria of the fast subsystems the stable sheets
(there are two disjoint stable sheets—one where x > 1 and one where x < 1), and we call the
piece composed of unstable equilibria the unstable sheet (where |x| < 1).

The relationship between the full system (ε �= 0, (2.1)) and the slow flow was studied by
Tikhonov [2, 24] and later by Fenichel [11]. Fenichel proved that there exists a slow manifold,
that is, an invariant manifold, within distance O(ε) of the critical manifold on compact regions
of regular points. Moreover, the slow flow on the critical manifold gives O(ε) approximations
to trajectories of the forced van der Pol equation.

For ε �= 0, systems (2.1) and (2.2) are equivalent, but the limit systems as ε → 0 are
quite different. The trajectories of (2.1) consist of segments for which the fast subsystem is
a good approximation to the dynamics and segments for which the slow subsystem is a good
approximation to the dynamics. The transitions between these segments occur at folds. Folds
are the singular points of the projection of the critical manifold onto the (y, θ) plane. For the
forced van der Pol equation, these folds occur at x = ±1, y = ∓2/3. As ε → 0, many solutions
of the full system approach curves that are concatenations of trajectories of the slow flow and
trajectories of the fast subsystem, joined at fold points of the critical manifold.

Figure 2.1 shows a trajectory of the full system ((2.1), ε �= 0) along with the critical
manifold and the slow flow on that manifold. This figure illustrates the roles of the fast
subsystems and slow flow in understanding solutions to the full system. The yellow curve is a
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Figure 2.1. The two-dimensional surface illustrates the critical manifold of the forced van der Pol equations
(2.1). In this example, a = 2.3 and ω = 1. The white arrows are the vector field of the slow flow on the critical
manifold, and the white curves are corresponding trajectories of that vector field. The green and red asterisks
located at the folds of the critical manifold are the folded singularities, foci and saddles, respectively. The yellow
curve represents a solution to (2.1) for ε = 10−4.
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Figure 2.2. These are examples of the slow flow. In (a), the parameters are a = 2.3 and ω = 1, the same
as in Figure 2.1. In (b), a = 20 and ω = 5, which are the same values shown in Figures 4.1(a) and 4.2. The
plots show the stable and unstable manifolds of the folded saddles, along with the circles x = ±1 and x = ±2.
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solution to the full system (2.1), with ε = 10−4, a = 2.3, and ω = 1. The blue two-dimensional
surface is the critical manifold, and the white curves and arrows show the trajectories of the
slow flow and its vector field on the critical manifold, respectively. Notice that the solution to
the full system appears to follow the slow flow until it reaches a fold in the critical manifold,
where it then appears to follow the fast subsystem until again reaching the critical manifold.
The red and green asterisks mark folded singularities, points on the fold curves of the critical
manifold that play a central role in our analysis of bifurcations. Figure 2.2 gives examples of
the slow flow for two sets of parameter values. The folds of the critical manifold are the lines
x = ±1, and the “landing points” of the jumps from the folds (that is, the projections of the
fold lines along the fast variable onto the critical manifold) are the lines x = ±2.

The next section defines a reduced hybrid system whose solutions come from piecewise
smooth curves that approximate solutions of the system (2.1) and consist of segments that
are solutions to the fast subsystems and slow flow.

3. The reduced system. The main idea of this paper is to study the global bifurcations
of the forced van der Pol equation by studying a reduced system Ψh, a hybrid dynamical
system that combines solutions to the slow flow of (2.1) with discrete time transformations
along trajectories of the fast subsystems. Specifically, the reduced system is defined to follow
the slow flow on the stable sheets |x| ≥ 1 of the critical manifold and to have discrete time
jumps from (θ,±1) to (θ,∓2) on the boundaries of the two stable sheets. The boundaries of
the two stable sheets are folds of the projection of the critical manifold (see Figure 2.1) onto
the two-dimensional space of slow variables. Trajectories of the system Ψh give approxima-
tions to many trajectories of the full three-dimensional flow. We explain the nature of this
approximation in section 4.

The projection π(x, y, θ) = (y, θ) of the critical manifold onto the (θ, y) space of slow
variables is singular on the fold curves x = ±1, y = ∓2/3. Due to these singularities, we use
(θ, x) as coordinates for the slow flow, with (θ, x) lying in one of the two closed half-cylinders
x ≥ 1 or x ≤ 1. We reparametrize the slow flow to obtain the vector field

θ′ = ω(x2 − 1),
x′ = −x+ a sin(2πθ).

(3.1)

The vector field (3.1) is obtained from the forced van der Pol equation (2.1) by differentiating
the algebraic equation y = x3/3− x to obtain ẏ = (x2 − 1)ẋ, substituting the result into the
van der Pol equation (2.1), and rescaling the time by (x2 − 1). We shall henceforth call the
system (3.1) the slow flow since it has the same trajectories as the original slow flow on the
stable sheets of the critical manifold. However, there are several ways in which this rescaled
system (3.1) differs from the slow flow in its original coordinates. First, it is defined on the
fold curves, while the original equations are not due to the singularity of the projection π.
Second, it reverses time on the unstable sheet, represented by the cylinder |x| < 1 in the (θ, x)
coordinates. Therefore, the direction of the slow flow on the unstable sheet of the critical
manifold is opposite that defined by (3.1). Note that the system (3.1) has equilibrium points
on the circles x = ±1 if a ≥ 1. These equilibria are called folded equilibria. They approximate
points where the flow of the van der Pol equation (2.1) is tangent to the fold curves. The
van der Pol equation (2.1) has no equilibria.
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We establish a few basic properties of the slow flow. If x > a > 0, then x′ < 0, while
if x < −a < 0, then x′ > 0. Consequently, the region |x| < a is forward invariant for
system (3.1), and all trajectories flow into this region. The vector field is symmetric with
respect to the symmetry given by T (θ, x) = (θ+ 1

2 ,−x). We also observe that the divergence
of the vector field is constant, namely, −1. Therefore, its flow can have at most a single
periodic orbit. Periodic orbits must be T -symmetric (otherwise, there would be a symmetric
partner) and consequently cross x = 0. The equilibrium points of the slow flow lie on the
circles x = ±1. We conclude that all trajectories with initial conditions satisfying |x| > 1
reach the circles x = ±1 unless they lie in the stable manifold of an equilibrium point, in
which case they approach x = ±1 as t → ∞.

The equilibrium points of the slow flow lie at the points (θ, x) = (± sin−1(1/a)/2π,±1).
Here sin−1 is regarded to be a double valued “function” on (−1, 1). If a = 1, there are two
equilibrium points; if a > 1, there are four equilibrium points. The linear stability of the
equilibria is easily computed [28] using the Jacobian of the slow flow equations:

( −1 2πa cos(2πθ)
2ωx 0

)
.

At a = 1, the equilibria are saddle-nodes. For a > 1, two of the equilibria are saddles. In
the parameter interval 1 < a <

√
1 + 1/(16πω)2, the two remaining equilibria are stable

nodes. When a =
√

1 + 1/(16πω)2, these equilibria are resonant with a single negative eigen-
value, and when a >

√
1 + 1/(16πω)2, they are stable foci. We see below that some global

bifurcations of Ψh depend upon the type of stable equilibrium points found in the slow flow.
We label the coordinates of the saddle point on x = 1 as (θ, x) = (θ1s, 1) and the coordi-

nates of the node as (θ1n, 1). The unstable and stable manifolds of the saddle will be denoted
by the standard notation Wu and Ws, respectively. We further define the point p1u = (θ1u, 1)
to be the first intersection of the unstable manifold Wu of (θ1s, 1) with x = 1 and set θ2si

to be the θ coordinate of the ith intersection of the stable manifold Ws of the saddle (θ1s, 1)
with x = 2 as Ws is traversed backward from x = 1 into the region x > 1. This notation
will be used in our description of the properties of the hybrid system Ψh and its bifurcations.
Figure 4.1 displays phase portraits of the slow flow for two sets of parameter values.

4. Return maps. When ε > 0 is small, trajectories of the van der Pol equation (2.1)
with initial conditions near the stable sheets of the critical manifold that do not pass close
to the folded singularities are approximated by trajectories of the reduced system Ψh [19].
Consequently, bifurcations of the reduced system identify the location of parameters at which
bifurcations of the van der Pol equation are expected. Our primary goal in this paper is to
identify bifurcations of the reduced system Ψh. (Later papers in this series will investigate
the relationship between bifurcations of Ψh and those of the van der Pol equation (2.1).) In
this section, we develop and describe a return map from the circle S2 (defined by the equation
x = 2) to itself as a means of describing periodic solutions to the hybrid system Ψh.

4.1. Derivation of the half-return map H. Using the observations in the last section, we
define two maps P± along trajectories from the circles S±2 defined by x = ±2 to the circles
S±1 defined by x = ±1. At points that are not in the stable manifolds of the equilibria, the
maps P± are well defined and smooth. At transverse intersections of the stable manifolds of
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the saddles with S±2, the maps P± are discontinuous. At the circles x = ±1 on the critical
manifold, trajectories of the forced van der Pol equation jump from a fold to the circles
x = ∓2 on the critical manifold. For the two-dimensional reduced system, we define the
operators J+(θ, 1) = (θ,−2) and J−(θ,−1) = (θ, 2) that describe the discrete jumps in Ψh.
The return map for Ψh to the circle S2 is then given by the composition J−P−J+P+ since

P+ : S2 → S1,

J+ : S1 → S−2,

P− : S−2 → S−1,

J− : S−1 → S2.

Actually, the map J−P−J+P+ is the perfect square of a half-return map H. To define H,
we use the symmetry operator T (θ, x) = (θ + 1

2 ,−x). We note that the slow flow and the
reduced system Ψh are symmetric with respect to the transformation T , T 2 is the identity on
S1 ×R, and the following relations hold: TP+ = P−T and TJ+ = J−T . Then the return map
J−P−J+P+ = J−P−TTJ+P+ = (TJ+P+)(TJ+P+) is the square of the map H = (TJ+P+) on
the circle S2. Consequently, the periodic orbits of Ψh can be divided into those that are fixed
by the half-return map H and those that are not. Because T phase shifts θ by 1

2 , the fixed
points of H all yield T -symmetric periodic orbits that make exactly two jumps—one from
x = 1 to x = −2 and one from x = −1 to x = 2. In this paper, we study the bifurcations of
periodic orbits of the reduced system Ψh with a focus upon fixed points and period 2 points
of the half-return map H. These bifurcations correspond to bifurcations of periodic orbits in
the forced van der Pol oscillator that are T -symmetric and have just two jumps. The stable
periodic orbits studied by Cartwright and Littlewood [9, 20, 21] are in this class: they are
T -symmetric with two jumps and yield fixed points of H.

4.2. Properties of H. The half-return map H depends on the two parameters a and ω.
The lines a = 1 and a = 2 divide the a-ω plane into regions in which H has fundamentally
different properties. The map P+ is a diffeomorphism of the circle S2 to the circle S1 for
0 < a < 1. In this regime, x decreases along all trajectories in the strip 1 < x < 2, implying
that H is a circle diffeomorphism. Its rotation number depends upon ω, increasing with ω.
All rotation numbers in [12 ,∞) are realized as ω varies in (0,∞).

When 1 < a < 2, the map P+ no longer maps the circle S2 onto the circle S1. Its image I1
excludes the portion of S1 that lies below the unstable manifold Wu defined in the previous
section. The discontinuities in the domain of P+ occur at points in Ws ∩S2. There is a single
point of discontinuity since the circle S2 is a cross-section for the flow and Ws crosses S2 only
once. It also follows that the map P+ remains increasing in this parameter regime. Thus H
is a family of increasing maps of the circle into itself with a single point of jump discontinuity
in this parameter regime. This implies that H still has a well-defined rotation number, and
the period of all of its periodic orbits is the denominator of the rotation number. Quasi-
periodic trajectories are still possible, but the set of parameter values yielding quasi-periodic
trajectories is likely to have measure zero [16].

When 2 < a, the map P+ is no longer monotone. There are two points p2l = (θ2l, 2) =
( 1
2π sin−1( 2

a), 2) and p2r = (θ2r, 2) = (1
2 − 1

2π sin−1( 2
a), 2) at which P+ has a local maximum
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Figure 4.1. The structure of the reduced system in the half-cylinder 1 < x for (a) (ω, a) = (5, 20) and (b)
(ω, a) = (10, 20). Unstable manifolds Wu are drawn with dot-dash curves, stable manifolds Ws are drawn solid,
the trajectories originating at the points p2l are drawn dashed, and the circles x = 2 are drawn as dotted lines.

and minimum, respectively. On the interval D = (θ2l, θ2r), P+ has negative slope, while on
S1 − D̄, it has positive slope. There are two crucial additional aspects to the structure of
H as a piecewise continuous and piecewise monotone mapping of the circle. First, there are
discontinuities of P+ at intersections of D with Ws. (There may be only one such intersection
point.) At the points of discontinuity in Ws∩S2, there is a jump with limit values 1

2 +θ1s = θr
and 1

2 + θ1u = θl. We denote by ql and qr the points (θl, 2) and (θr, 2) in S2. Second, we
observe that the maximum height of Wu is a decreasing function of ω and is unbounded as
ω → 0. Therefore, if ω > 0 is small enough, Wu intersects the circle S2. When this happens,
it divides S2 into two intervals. The points in S2 above Wu have their images in IH = [ql, qr],
while the points in S2 below Wu have their images to the left of ql. (If 0 < θ1s <

1
2 < θ1u < 1,

then IH ⊂ [0, 1]. Otherwise, if 0 < θ1u < 1
2 , the circular arc IH contains 0, and it is convenient

to choose a fundamental domain for the universal cover of the circle S2 that contains [ql, qr].)
Note that Ws lies above Wu.

Figure 4.1 shows the structure of the flow in the strip 1 < x < 2.25 for a = 20, with ω = 5
on the left and ω = 10 on the right. (Note that θ = 0 and θ = 1 are identified, so the flow is
actually on a cylinder: (θ, x) ∈ S1 × R.) The folded saddles ps are located by the symbol ×.
Their stable separatrices are drawn as solid curves, and their unstable manifolds are drawn as
dot-dashed curves. The circles S2 are drawn dotted, and the points p2l and p2r are labeled.
The dashed trajectories have initial condition p2l. The intervals IH = [ql, qr] that are the
images of most branches of H are drawn as thick lines. The points p1u ∈ Wu ∩S1 are labeled,
and the points in Ws ∩ S2 are marked by large dots. The graph of the half-return map H for
(ω, a) = (5, 20) is shown in Figure 4.2. The map H is discontinuous at the points of Ws ∩ S2

and has a local maximum at p2l and a local minimum at p2r.

The topological theory of one-dimensional maps is based upon partitioning the domain
of a map into intervals on which it is continuous and monotone. Here the graph of H can
contain the following types of intervals on which it is continuous and monotone:

• a decreasing branch with domain [p2l, p2r] (this occurs if a > 2 but Ws intersects S2

in a single point),
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Figure 4.2. The graph of H when a = 20 and ω = 5. These are the same parameter values as in
Figure 4.1(a). Note that the discontinuities of H occur at the intersections of Ws with S2, and H has a local
maximum and a local minimum at the θ coordinates of p2l and p2r, respectively.

• a branch containing p2r with a local minimum,
• a branch containing p2l with a local maximum,
• monotone decreasing branches in (p2l, p2r),
• monotone increasing branches in the complement of [p2l, p2r].

We assume for the moment that all intersections of Ws with S2 are transverse. Then Ws must
have an odd number of intersections with S2, and every intersection in [θ2l, θ2r] is preceded
by an intersection in the complement of this interval. Therefore, the number of monotone
increasing branches is one larger than the number of monotone decreasing branches. Moreover,
the image of all branches is contained in IH with the possible exception of the branch with
a local minimum. The branch structure of H will play an important role in defining the
different types of bifurcations in section 5. In particular, saddle-node bifurcations will occur
on the branch with a local minimum, and homoclinic points occur at the endpoints of certain
branches.

The local maximum and minimum of H occur at points where the vector field is tangent
to the circle x = 2. The circles x = ±2 are the images of the fold curves x = ∓1 in
the reduced system. Differentiating the equation x′ = −x + a sin(2πθ), we obtain x′′ =
−x′ + a

2π cos(2πθ)θ′ = 3aω
2π cos(2πθ) �= 0 since x′ = 0 and | sin(2πθ)| < 1. Therefore, the

curvature of the trajectories is not zero at the tangencies with x = 2, and there are local
extrema for H at these points.

Next we analyze the points of discontinuity for the map H. The end of a branch behaves
quite differently depending upon whether the trajectories of points near the end of the branch
of H lie to the left or right of the stable manifold Ws of the saddle and upon whether there is
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Figure 4.3. The flow of Ψh near a saddle-node. Trajectories in the strong stable manifold are drawn in
blue, trajectories in the interior of the stable manifold are drawn in yellow, and trajectories in the hyperbolic
region are drawn in green.

a folded node or a folded focus. In the case in which the trajectories lie to the left of Ws, they
cross the circle x = 1 immediately to the left of the saddle. We give an asymptotic analysis of
the slope of H at the branch end by approximating the flow near the saddle by a linear flow.
Introducing coordinates for which the linear unstable and stable manifolds of the saddle are
the u and v axes respectively, the linear approximation of the slow flow is

u′ = αu,
v′ = −βv

(4.1)

with 0 < α and β = α+1 since the trace of the Jacobian at the saddle is −1. The function uβvα

is constant along trajectories of system (4.1). In these coordinates, the circle x = 1 becomes
a line of the form v = cu. The flow from any cross-section to the stable manifold along the
v axis to this line will have a derivative that becomes infinite. For example, the intersection
(u1, v1) of the trajectory through (u0, 1) with this line will satisfy |u0|β = |u1|β|v1|α and
|u1| = |c|−α/(α+β)|u0|β/(α+β). Since β/(α+ β) < 1, the slope of this function tends to infinity
as u0 → 0. This argument implies that the slope of H is unbounded for points to the left of
Ws.

In the case in which trajectories at the end of the branch pass to the right of Ws, they
proceed along the unstable manifold Wu before they cross the circle x = 1. If there is a folded
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Table 5.1
A summary of the types of bifurcations and their defining equations.

Type of bifurcation Defining equation

Saddle-node H(x) = x, H ′(x) = 1
Saddle left homoclinic θ2s1 − θ1s − 0.5 = 0 (mod 1)
Saddle right homoclinic 1 θ2s1 − θ1u − 0.5 = 0 (mod 1)
Saddle right homoclinic 2 θ2s2 − θ1u − 0.5 = 0 (mod 1)
Saddle right homoclinic 3 θ2s3 − θ1u − 0.5 = 0 (mod 1)
Nodal homoclinic θ2ss1 − θ1n − 0.5 = 0 (mod 1)
Heteroclinic θ1n − θ2s1 − 0.5 = 0 (mod 1)

focus, they cross x = 1 to the right of Wu. If there is a folded node, these trajectories tend to
the node. In the case of the focus, it is well known that the mapping from a cross-section to Ws

to a cross-section to Wu will behave asymptotically like uβ/α at its endpoint. Since β/α > 1,
the derivative approaches 0 as u tends to 0. We conclude that at points of discontinuity for
H, the slope is unbounded on one side of the discontinuity (the side of trajectories to the left
of Ws), and the slope approaches zero on the opposite side (the side of trajectories to the
right of Ws). In the case of a folded node, the half-return map H is undefined on the interval
of points between Ws and the strong stable manifold of the node. We choose to extend H to
this interval, giving it the constant value that is its limit as points approach the strong stable
manifold of the node from the right. See Figure 4.3.

Our analysis of bifurcations will make substantial use of one additional concept that we
call the circuit number of a trajectory for the reduced system and for H. We lift the slow
flow to the universal cover of R×S1, and consider trajectories that flow from (θ0, 2) to (θ1, 1)
on the universal cover. The integer part of θ1 − θ0 will be called the circuit number of the
trajectory. As ω increases, θ′ increases, and the circuit number of the trajectories increase.
This leads to a repetitive structure in the bifurcation diagram for the reduced system, in which
the same structures reappear in the parameter space, once for each circuit number.

5. Codimension one bifurcations of fixed points.

5.1. Bifurcation types and defining equations. This section characterizes the codimen-
sion one bifurcations of fixed points that we find for the half-return map H. We have found
at most three fixed points for any parameter value. These fixed points are confined to two
branches of H: the branch containing a local minimum and the branch immediately to the
left of the branch containing a local minimum. We have not proved that these are the only
possible locations of fixed points, but this is consistent with the bifurcation diagram described
in section 5.2. Codimension one bifurcations of fixed points for H fall into three classes:

• saddle-node bifurcations,
• homoclinic bifurcations, and
• heteroclinic bifurcations.

For the first two types of bifurcations, we make further distinctions, described in sections 5.1.1
and 5.1.2. Table 5.1 contains a summary of the bifurcations and their defining equations that
will be described in the next sections.
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Figure 5.1. The graph of the half-return map for the given values of a and ω shows a min saddle-node
bifurcation, as can be seen by the tangency of the third branch of H with the dotted line H(θ) = θ at a minimum
of H − I.

5.1.1. Saddle-node bifurcations. The saddle-nodes are distinguished by whether H − I
has a local minimum or maximum at the saddle-node point. We call these min and max
saddle-nodes, respectively. Figure 5.1 is an example of a min saddle-node, and Figure 5.2 is
an example of a max saddle-node. The defining equations for saddle-node bifurcations are
H(x) = x together with H ′(x) = 1.

5.1.2. Homoclinic bifurcations. We distinguish two types of homoclinic orbits—those
with a homoclinic connection to the folded saddle, called saddle homoclinic orbits and those
with a homoclinic connection to the folded node along its strong stable manifold, called nodal
homoclinic orbits. We further classify the saddle homoclinic orbits as left homoclinic or right
homoclinic, depending on whether the orbit is the limit of trajectories lying to the left or to
the right of the stable manifold of the saddle.

The defining equation for a left homoclinic bifurcation is θ2s1 − θ1s − 0.5 = 0 (mod 1),
which guarantees that the first intersection of the stable manifold of the saddle with x = 2,
namely, θ2s1, is the image of θ1s under TJ+ (see Figure 5.3). Thus a saddle left homoclinic
orbit flows from (θ2s1, 2) to the saddle (in infinite time) and then is mapped back to its starting
point by TJ+. Fixed points near a left homoclinic saddle bifurcation leave x = 1 to the left
of the folded saddle point (θ1s, 1) and return to x = 2 near the stable manifold of the folded
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Figure 5.2. The graph of the half-return map for the given values of a and ω shows a max saddle-node
bifurcation, as can be seen by the tangency of the third branch of H with the dotted line H(θ) = θ at a maximum
of H − I.
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Figure 5.3. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a left homoclinic saddle
bifurcation. This bifurcation is apparent in (a) since the right end of the first branch of H corresponds to a fixed
point. (b) shows that the computed orbit satisfies the algebraic condition for a left homoclinic saddle bifurcation
θ2s1 − θ1s − 0.5 = 0 (mod 1).
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Figure 5.4. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 1 homoclinic
saddle bifurcation. This bifurcation is apparent in (a) since the left end of the second branch of H corresponds
to a fixed point. (b) shows that the computed orbit satisfies the algebraic condition for a right 1 homoclinic
saddle bifurcation θ2s1 − θ1u − 0.5 = 0 (mod 1).
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Figure 5.5. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 2 homoclinic saddle
bifurcation. This bifurcation is apparent in (a) since the right end of the second branch of H corresponds to a
fixed point. Figure (b) shows that the computed orbit satisfies the algebraic condition for a right 2 homoclinic
saddle bifurcation θ2s2 − θ1u − 0.5 = 0 (mod 1).
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Figure 5.6. (a) is a plot of H, and (b) illustrates the phase portrait of the orbit at a right 3 homoclinic
saddle bifurcation. This bifurcation is apparent in (a) since the left end of the second branch of H corresponds
to a fixed point. (b) shows that the computed orbit satisfies the algebraic condition for a right 3 homoclinic
saddle bifurcation θ2s3 − θ1u − 0.5 = 0 (mod 1), and the inset shows the last two intersections of the stable
manifold Ws with the circle S2.
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Figure 5.7. This figure illustrates a nodal homoclinic bifurcation. Note that the computed solution satisfies
the algebraic condition θ2ss1 − θ1n − 0.5 = 0 (mod 1). The inset shows the connection between the saddle and
the node. We note that it is this same connection that appears in the heteroclinic bifurcations. The plot of the
half-return map H for these parameter values appears in Figure 6.3(b).
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indicate the parameter values where the stable manifold of the saddle is tangent to the circle S2. The red
squares and red diamonds indicate parameter values where there is a homoclinic orbit and for which the stable
manifold of the saddle is also tangent to the circle S2. Additional features of the diagram that appear on a
smaller scale are highlighted in Figures 6.1 and 6.4.
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Figure 5.9. (a) is a plot of H near a T2S1 tangency, and (b) illustrates the phase portrait of the orbit at
the same parameter values. The tangency can be seen in the inset of (b). Note that the tangency occurs at the
first intersection of Ws with x = 2.
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Figure 5.10. (a) is a plot of H near a T2S2 tangency, and (b) illustrates the phase portrait of the orbit at
the same parameter values. The tangency can be seen in the inset of (b). Note that the tangency occurs at the
second intersection of Ws with x = 2.

saddle. Because (θ2s1, 2) is always a point of S2 where x′ < 0, the slope of H is always positive
near left homoclinic points. Moreover, the nearby fixed points are unstable since the slope of
H is unbounded near the branch ends of Ψh orbits that pass to the left of Ws.

Fixed points of H approach a right homoclinic saddle bifurcation if limiting Ψh trajec-
tories lie to the right of the stable manifold Ws of the folded saddle (see Figure 5.4). These
trajectories then follow the unstable manifold Wu of the saddle and jump to the right of
p1u, the intersection of the unstable manifold with x = 1. Thus trajectories that approach a
right homoclinic saddle bifurcation hit x = 1 near θ1u and return to x = 2 near the stable
manifold of the saddle. The stable manifold Ws may intersect x = 2 several times, and the
homoclinic point need not jump to the first intersection point. We classify right homoclinic
saddle bifurcations by the number of times the stable manifold of the saddle crosses x = 2
before returning to the saddle. Thus right homoclinic 1 saddle bifurcations occur when the
trajectory returns to x = 2 near θ2s1, the first crossing of the stable manifold with x = 2.
The defining equation for this bifurcation is θ2s1 − θ1u − 0.5 = 0 (mod 1). Similarly, right
homoclinic 2 saddle bifurcations refer to the trajectories that return near the second crossing
of the stable manifold with x = 2, that is, θ2s2 − θ1u − 0.5 = 0 (mod 1); an example is shown
in Figure 5.5. The only observed right homoclinic saddle bifurcations are of types 1, 2, and 3.
Figure 5.6 shows an example of type 3. The analysis of the previous section establishes that
the fixed points near a right homoclinic orbit are stable.

Defining equations for the nodal homoclinic bifurcations are such that the intersection of
the strong stable manifold of the node with x = 2 should have θ2ss1 = θ1n − 0.5 (mod 1) (see
Figure 5.7). Since these bifurcations occur for a < 2, the strong stable manifold of the node
intersects x = 2 only once. Trajectories that lie to the right of the strong stable manifold
of the node cross the circle S1 before approaching the node. Therefore, they make jumps
before the trajectories reach the node. Trajectories that lie to the left of the strong stable
manifold of the node do not cross the circle S1. The extension of H to the interval between the
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stable manifold of the saddle and the strong stable manifold of the node is constant. For this
extended map, the number of fixed points does not change at the nodal bifurcation points,
but the fixed points cross from a region where H has positive slope to the extended region,
where H is flat.

A qualitative picture of the behavior of H to the right of the strong stable manifold of the
folded node can be found by considering the linear flow near a node with an analysis similar
to that which we used to determine the slope of H near its branch endpoints. Consider the
linear system

u̇ = −αu,
v̇ = −βv,

where β > α > 0. This is a stable node with eigenvectors along the coordinate axes, and the
v axis is the strong stable manifold. To obtain a qualitative picture of the behavior of H, we
consider a map u0 �→ u1 given by the flow from a line segment v = v0 (and, say, 0 < u0 < 1)
to the line v = mu (where m > 0; this line corresponds to the fold line). The function uβv−α

is constant along trajectories; with this we find

u1 = Cu

(
β

β−α

)
0 ,

where C = (mv0
)
( α
β−α

)
. Thus the map is given by a power law, and since β > α > 0, the

exponent is greater than one. We conclude that the fixed points of H near a nodal homoclinic
bifurcation are stable.

5.1.3. Heteroclinic bifurcations. Heteroclinic bifurcations describe curves that are unions
of two trajectories that asymptote to both a folded saddle and a folded node. The unstable
manifold of the folded saddle lies in the stable manifold of the folded node, giving rise to
one segment of the heteroclinic orbit. The second trajectory lies in the stable manifold of the
saddle. The defining condition is that the node jumps to the intersection of the stable manifold
with S2. The defining equation is that θ1n − θ2s1 − 0.5 = 0 (mod 1). Thus the heteroclinic
cycle is composed of trajectories lying in the stable and unstable manifolds of the saddle. The
primary difference between these bifurcations and the right homoclinics of the saddle is that
the unstable manifold Wu approaches the node here, while in the right homoclinic it reaches
x = 1 and then jumps.

5.2. Description of the bifurcation diagram. Figure 5.8 shows the (numerically com-
puted) bifurcation diagram for fixed points of H in the region (a, ω) ∈ [0, 4] × [0, 4]. In this
diagram, saddle-node curves are drawn in green, left homoclinic curves in blue, and right ho-
moclinic curves in black. The dotted line separates the region to the right of a = 1 with folded
nodes from the region with folded foci. The region of the bifurcation diagram close to a = 1
will be described in detail in section 6.2 since the bifurcations at a = 1 have codimension two.

For 0 < a < 1, the fixed point bifurcations consist of max and min saddle-node curves,
drawn in green. For each circuit number, the min saddle-nodes are the upper branch that
appear to extend to infinity. For a sufficiently large, these branches appear to be approximately
linear. The lower branch of saddle-nodes in this region are max saddle-nodes. These curves
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extend slightly past a = 1 but do not extend to infinity as with the curve of min saddle-nodes.
We find that these curves end in a cusp that connects to short curves of min saddle-node
bifurcation which follow the black curve of right homoclinics back to a = 1. This region will
be described in more detail in section 6.1.

In the region a > 1 and for each circuit number, there are three bifurcation curves that
appear to extend to infinity: the min saddle-node bifurcations, the left homoclinic bifurcations,
and the right homoclinic bifurcations. Along each right homoclinic curve, two points are
marked where the homoclinic orbit is tangent with the line x = 2. Changes in the number
of intersections of the stable manifold of the saddle with x = 2 occur at these locations. The
red square separates right saddle homoclinics 1 to the left of the red square from right saddle
homoclinics 3 to the right of the red square. See Figure 5.9. The number of crossings switches
from 1 to 3 because the stable manifold Ws has a point of tangency with the circle S2 at the
parameter values marked with the red square. To the right of this point along the right saddle
homoclinic curve, Ws has 3 crossings of S2, the third being the homoclinic point. Similarly,
the red diamond separates the right saddle homoclinics 3 to its left from the right saddle
homoclinics 2 to the right of the red diamond. See Figure 5.10. Here the stable manifold Ws

is tangent to the circle S2 at a local minimum. See Figure 5.10. To the left of the red diamond
along the homoclinic curve, the homoclinic points lie to the left of a local minimum in Ws at
its second crossing with S2. To the right of the red diamond along the homoclinic curve, the
homoclinic points lie to the right of a local minimum in Ws at its second crossing with S2.

The types of bifurcations in the bifurcation diagram can be related to properties of the
graph of H. The first two crossings of Ws with S2 bound an interval containing the point
p2r =

1
2 − 1

2π sin−1( 2
a , 2), where the trajectories of the slow flow have a tangency with S2 from

below. Thus this interval is the branch of H with a local minimum. We call the branch with
the local minimum the central branch of H. Left homoclinics always occur on the central
branch, at its right endpoint. Right homoclinics 2 and right homoclinics 3 occur on the
branch immediately to the left of the central branch. In the case of right homoclinics 3, this
branch contains the local maximum θ2l =

1
2π sin−1( 2

a) of H, H has only two branches, and
the homoclinic point is the left endpoint of the branch. In the case of right homoclinics 2,
the branch is monotonically decreasing and the homoclinic point is the right endpoint of the
branch. We also note that, with decreasing ω, new central branches form above the diagonal
and then grow in length. Fixed points first appear on the central branch at a min saddle-node
bifurcation where the graph of H on the central branch becomes tangent to the diagonal.
As ω decreases further, this is quickly followed by a left homoclinic point at which the right
endpoint of the central branch crosses the diagonal.

For values of a at which there are folded nodes, there is another curve in the bifurcation
diagram corresponding to nodal homoclinic orbits that lie in the strong stable manifold of the
folded node. This curve is drawn in magenta on the bifurcation diagram but is sufficiently
short that it is difficult to see. Figure 6.4 gives a blown up picture of the region containing
the strong nodal homoclinic bifurcation curve on the lowest curve with circuit number 0.

6. Codimension two bifurcations. There are several different points in the bifurcation
diagram Figure 5.8 at which bifurcation curves meet or cross. These are codimension two
bifurcations of Ψh. The previous section discussed tangencies of the stable manifold Ws with
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S2 at right homoclinics where there is no singularity of the bifurcation curve, but its type
changes. This section analyzes the remaining codimension two bifurcations of fixed points.
We describe each separately and indicate how these bifurcations fit into the diagram of fixed
point bifurcations described in the previous section.

6.1. Cusps. Cusps are codimension two bifurcations occurring along the curve of max
saddle-node bifurcations. The lower green curve in Figure 6.1 corresponds to the curve of
max saddle-nodes that were discussed in the section 5. These curves start at a = 0 at the
point where the min saddle-node curve meets the max saddle-node curve, and they continue
past a = 1 to a cusp point just beyond the black curve of right saddle homoclinic orbits
(see Figure 6.1). At the cusp, the branch meets a min saddle-node curve that follows the
black right homoclinic curve back to a = 1. As with the green and blue curves discussed in
section 5.2, the location of this curve of saddle-nodes so close to a black curve of homoclinics
indicates that these two features are close together in the graph of H. The proximity of these
two curves is investigated further in section 6.2. Figure 6.2 shows the half-return map H at
a min saddle-node bifurcation on the short branch. Notice that, for nearby parameter values,
a homoclinic bifurcation will appear, as can be seen in Figure 6.2.

From the theoretical perspective of singularity theory, we should establish that the fixed
point of H has nonzero third derivative at the cusp parameter values. We have not attempted
to do this, but the numerical results suggest that this is true.

6.2. Bifurcations at a = 1. When a = 1, the slow flow has a folded saddle-node equilib-
rium. At discrete values of ω (one for each circuit number), there is a homoclinic connection
along the strong stable manifold of the folded saddle-node. These codimension two points
mark the beginning (as a increases) of the more complicated curves of homoclinic points and
saddle-node points of H.

In the region of parameter space between a = 1 and a =
√

1 + 1/(16πω)2, the folded
equilibria are saddles and stable nodes. The basin of attraction of the node includes an
interval in S2, and, on this interval, the flow map P+ is defined to be θ1n, the θ coordinate
of the node. Thus the graph of H on this interval is a horizontal line. The left and right
endpoints of this interval are the intersections of the stable manifold of the saddle and the
strong stable manifold of the node, respectively, with S2. The value of H on this interval is
θ1n − 1

2 . At the left end of the interval, H has a discontinuity: limθ→θ−2s1
H(θ) = θ1s − 1

2 , but

limθ→θ+
2s1

H(θ) = θ1n − 1
2 .

For each circuit number, there is a region in parameter space between a = 1 and a =√
1 + 1/(16πω2), where the horizontal segment of the graph of H includes a fixed point. If

the right end of the interval is a fixed point, there is homoclinic connection along the strong
stable manifold of the node. (See Figure 6.3(b).) For circuit number 1, these codimension
one points are plotted as a magenta line in Figure 6.4. In this figure, the magenta line ends
at the curve a =

√
1 + 1/(16πω)2 (the dotted line). Increasing a beyond this point changes

the homoclinic point to a fixed point of H (i.e., a periodic orbit of Ψh).

If the left end of the interval is a fixed point, there is a heteroclinic connection containing
the stable and unstable manifolds of the saddle. (See Figure 6.3(a).) These codimension
one points are plotted as a red line in Figure 6.4. At the transition from folded node to
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Figure 6.1. The branches of min saddle-node bifurcations that begin at a = 0 continue past a = 1 to the
cusp shown in this diagram.

folded spiral, heteroclinic points become right homoclinic points; thus the red curve connects
continuously to the black curve in Figure 6.4.

To summarize, the region in parameter space for which the horizontal segment of the
graph of H contains a fixed point is the region bounded by the red curve (the heteroclinic
points), the magenta curve (the homoclinic points for the strong stable manifold of the node),
and the dotted curve (the transition of the stable folded equilibrium from folded node to
folded spiral). These curves are shown in Figure 6.4. There are four curves that start at the
codimension two point a = 1 and ω ≈ 0.5546 (where the folded saddle-node has a homoclinic
connection). The one upper curve is the blue curve of left saddle homoclinics. There are
three lower curves. The lowest curve is the red curve of heteroclinic connections. The middle
curve is the magenta curve, where there is a homoclinic connection along the strong stable
manifold of the node. Slightly above this curve is the green curve of saddle-node bifurcations.
It can be seen in Figure 6.3(b) that only a very small change in the parameters is necessary
to perturb the system from the situation of having a stable nodal homoclinic bifurcation to
having a saddle-node bifurcation in H. Note that, for values of a smaller than 1, there are no
folded equilibria, and the only bifurcations of H are saddle-nodes.

At a = 1, the stability of the homoclinic cycles is more subtle to analyze than the stability
of the right and left homoclinic cycles because the center manifold of the equilibrium point
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Figure 6.2. The graph of H at a saddle-node bifurcation point. This point is on the curve of min saddle-
node bifurcation shown in Figure 6.1. The inset in the figure shows the tangency of the graph at the point where
H(θ) = θ. It can also be seen that a small change in the parameters can move this to a right homoclinic point,
in which the left end of the branch of the graph shown in the inset becomes a fixed point.

at (0.25, 1) is tangent to the circle S1. The map from the circle S2 to the circle S1 along
trajectories adjacent to the strong stable manifold of the equilibrium needs to be determined.
We begin with an analysis in normal form of coordinates of a saddle-node that gives most of
the information that we need to determine the stability of the map from S2 to S1. Consider
the (truncated) normal form for a saddle-node equilibrium point of a two-dimensional flow:

u̇ = u2,

v̇ = −αv.

The solutions of this system are

u(t) =
u0

1− tu0
,

v(t) = v0e
−αt.

(6.1)

We want to compute the map along trajectories from a cross-section of the strong stable
manifold to a curve tangent to the center manifold. Take the cross-section to the strong
stable manifold to be v = 1 and the curve to be the graph of the function v = h(u) with
h(0) = h′(0) = 0. If the trajectory with initial condition (u0, 1) flows to (u1, v1) with v1 =
h(u1), then we eliminate t from (6.1) to obtain the implicit equation

exp

(
−α

(
1

u0
− 1

u1

))
= h(u1),
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Figure 6.3. (a) shows an example of the graph of H when there is a heteroclinic connection. There is a
fixed point at the left end of the horizontal segment of the graph of H. (b) shows an example when there is
a homoclinic connection along the strong stable manifold of the node. The square inset in (b) has a width of
5 × 10−7; the lower intersection of the graph of H with the diagonal dotted line occurs at θ ≈ 0.754539. It is
clear from this picture that only a very small change in the parameters is required to produce a saddle-node
bifurcation in H.

which can be solved for the inverse of the map along trajectories

u0 =
αu1

α− u1 ln(h(u1))
.

If limu ln(h(u)) = 0 as u → 0, then lim du0
du1

= 1 as u1 → 0. This criterion and the tangency

conditions are satisfied if h(u) is asymptotic to uβ for some β > 1.
Now, the center manifold of (3.1) at its saddle-node equilibrium point has quadratic

tangency with the curve defined by x = 1− 2π2(θ − 1/4)2. This is verified by differentiating
this equation and using (3.1) to see that, along the curve,

(x− 1 + 2π2(θ − 1/4)2)′ = −x+ sin(2πθ) + 4π2ω(θ − 1/4)(x2 − 1)

= −(1− 2π2(θ − 1/4)2) + cos(2π(θ − 1/4)

+ 4π2ω(θ − 1/4)(x2 − 1)

= o((θ − 1/4)2)

since (x2−1) = O((θ−1/4)2). We conclude that the slope of the half-return mapH approaches
a finite slope as θ approaches the strong stable manifold of the saddle-node equilibrium from
the right.

We have computed H in a small neighborhood of this strong stable manifold and found
that the limit slope is large but finite. At the codimension two point (ω, a) = (0.554586, 1)
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Figure 6.4. A detail from the bifurcation diagram. This plot shows the curves that emanate from the
codimension two point, where there is a homoclinic connection to the folded saddle-node. For circuit number 0,
this occurs at a = 1 and ω ≈ 0.5546.

with circuit number 0, the slope is approximately 200. This calculation helps us understand
the structure of the bifurcation diagram near a = 1. It implies that, for values of a slightly
larger than 1, H ′ → 0 as θ approaches the strong stable manifold of the node from the right
but that the slope will increase rapidly and quickly become much larger than one. Thus there
will be a local minimum of H − I near the endpoint. (See, for example, Figure 6.3.) When
this local minimum of H − I is a fixed point of H, we have a min saddle-node bifurcation. In
this regime, there are two intervals in which H has slope smaller than 1 and two intervals in
which H has slope larger than 1. As a increases, the intervals which are not adjacent to the
discontinuity of H shrink in size, disappearing when there is an inflection point with slope 1.
Cusps occur when these inflection points of slope 1 are also fixed points.

6.3. Transversal crossings and the bistable regimes. The simplest codimension two bi-
furcations for the reduced system are points at which two codimension one bifurcations occur
at different places in the phase space. At such points, two codimension one bifurcation curves
intersect in the bifurcation diagram. We expect, and find in our numerical computations,
that these intersection points are transverse. The crossings play a significant role in the phe-
nomenon of bistability that has been an important part of the history of the forced van der Pol
system.
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For each value of a larger than those for which cusps occur, the values of ω for which H
has a stable fixed point with a given circuit number is an interval bounded below by a right
homoclinic curve and bounded above by a point on the curve of min saddle-node bifurcations
that originates at a = 0. For values of a close to 3, we observe that the min saddle-node curve
of circuit number k and the right homoclinic of circuit number k + 1 intersect one another
transversally. To the right of these intersection points, there are sectors in which there are
simultaneously stable fixed points of H with circuit numbers k and k + 1. The parameters
for which Littlewood [20, 21] deduced the existence of chaotic invariant sets for the flow lie
in these regions. To the left of the intersections of min saddle-nodes and right homoclinics,
there are regions with no fixed points for H. To the right of these intersection points, H has
fixed points for all values of ω. In addition to the two stable fixed points of H, there are
also unstable fixed points of H for parameter values just below the min saddle-node curves of
circuit number k. These disappear along left homoclinic curves with decreasing ω. We observe
that the left homoclinic curve of circuit number k also intersects the right homoclinic curve
of circuit number k + 1 transversally. In section 7, we show that there is a rich dynamical
structure near these codimension two bifurcations, including new families of chaotic invariant
sets.

The one additional transversal crossing of bifurcation curves for fixed points that we ob-
serve is in the region near a = 1, where the max saddle-node curves cross the right homoclinic
curves with the same circuit numbers.

7. Period 2 points of H. Thus far, our discussion of the bifurcation diagram of the
forced van der Pol equation has focused on the bifurcations of fixed points of H, the half-
return map. In the parameter region 0 ≤ a < 1, the theory of families of circle diffeomorphisms
gives a qualitative description of bifurcations of all periodic orbits. Following a brief review of
this theory, this section presents a numerical study of periodic orbits of period 2 with circuit
number 1. Period 2 orbits are solutions to H2(x) = x. We display graphs of the second iterate
H2 of the half-return map that give insight into the bifurcations of the period 2 orbits. There
are many common features between the bifurcations of fixed points and periodic orbits of
period 2 for H, but there are significant differences as well. We find new types of codimension
two bifurcations involving homoclinic orbits and identify small parameter regimes in which
there are new classes of chaotic invariant sets.

7.1. The parameter region 0 ≤ a < 1. For 0 < a < 1, the map H is a diffeomorphism
of the circle S2 that varies smoothly with both a and ω. Moreover, the slow flow has a
rotational property with respect to ω. As ω increases, the direction of the slow flow rotates
toward the x axis at a nonzero rate. Since the slow flow is in the sector with decreasing x
and increasing ω, two slow flows with the same parameter a and different parameters ω are
transverse. These two facts imply that the image of H is strictly increasing with ω. We also
conjecture, based upon our numerical computations, that the function H − I appears to have
a single local maximum and a single local minimum. This conjecture is sufficient to determine
the qualitative properties of the bifurcation diagram in the region 0 < a < 1 based on the
theory of circle diffeomorphisms [1]. There is an Arnold tongue of rotation number p

q for each
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Figure 7.1. This bifurcation diagram expands the diagram displayed in Figure 5.8 to include the bifurcations
associated with period 2 orbits. Note that the same line color is used to distinguish the same types of bifurcation,
but the line style indicates whether it is a bifurcation of fixed points or period 2 points.

rational number p
q . This is a strip that begins at1 ω = 2p+q

(3−2 ln 2)q and intersects each line
0 < a = const < 1 in an interval. In the interior of the Arnold tongue, there are two periodic
orbits of period q. On the lower boundary of the Arnold tongue, there is a max saddle-node
of period q, while on the upper boundary of the Arnold tongue, there is a min saddle-node
of period q. For each irrational rotation number ρ and parameter a, there is a single value of
ω for which H has rotation number ρ. The set of parameter values with irrational rotation
numbers forms a set of positive Lebesgue measure on each line 0 < a = const < 1 in the
parameter plane.

7.2. An augmented bifurcation diagram. Figure 7.1 is similar to the bifurcation diagram
displayed in Figure 5.8 but adds new information about bifurcations of period 2 orbits of
H. The bifurcation curves of period 2 orbits are dashed: saddle-node curves are green, left
homoclinic curves are blue, and right homoclinic curves are black. Also drawn as gray solid
curves are parameters where the stable manifold Ws is tangent to S2, and gray dashed curves
represent parameters where H maps one of the points p2l or p2r into Ws. Figure 7.2 shows
the region with period 2 orbits of circuit number 1 in more detail.

1When a = 0, the slow flow is easily integrated, and we find H(θ) = θ + ω
(

3
2
− ln 2

)− 1
2
. This is actually

the function lifted to the universal cover of S1; i.e., for the moment, we do not compute H modulo 1. By
solving Hq(θ) = p for relatively prime integers p (the circuit number) and q (the period), we obtain the given
formula for ω. The saddle-node curves, in particular, begin at ω = 2p+1

3−2 ln 2
.
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Figure 7.2. A closer look at part of the bifurcation diagram shown in Figure 7.1.

Several features of these figures are notable. The gray curves originate at a = 2. From
each endpoint, two curves emerge that correspond to parameters at which p2l lies in or maps to
Ws (lower curves) and parameters at which p2r lies in or maps to Ws (upper curves). “Inside”
the solid gray curve, the half-return map H has three points of discontinuity, while outside
the cusp it has a single discontinuity. Similarly, the number of discontinuities of H2 changes
as parameters cross the dashed gray curves. The curves where Ws is tangent to S2 intersect
the right homoclinic curves of fixed points at the codimension two points where the type of
the right homoclinic curve changes. The intersection at p2l, where the type changes from
right homoclinic 3 to right homoclinic 2, is tangential: the tangency curve remains below the
right homoclinic curve. There are similar points of tangential intersection along the curves of
period 2 right homoclinic bifurcations.

The curve of period 2 min saddle-nodes that begins at a = 0 meets the curve of period 2
left homoclinics at a codimension two bifurcation discussed in section 7.3. The curve of period
2 left homoclinics crosses the curve of fixed point right homoclinics. The curves of period 2
left and right homoclinics end at the codimension two bifurcation, where the circuit number
1 right and circuit number 0 left homoclinic curves cross. The coordinates of this point are
approximately (a, ω) = (3.29725, 1.34783). The sequences of bifurcations for the period 2
orbits appear to undergo similar bifurcations to those of the fixed points in the region close
to a = 1, but we have not explored the bifurcations here thoroughly. Instead, we focus upon
the homoclinic bifurcations.
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Figure 7.3. Graphs of H (green) and H2 (blue) near a point of codimension two bifurcation.

7.3. Period 2 homoclinic bifurcations. The “morphology” of period 2 homoclinics is
substantially more intricate than that of the fixed point homoclinic orbits. In particular, the
number of discontinuities of H2 changes several times along the period 2 homoclinic curves,
and there are codimension two bifurcations at which the branches containing the period 2
orbit change. Here we traverse these period 2 homoclinic curves, analyzing the transitions
that occur and displaying the graphs of H2 in different parameter regions.

The upper left homoclinic curve encounters the min tangency curve where the stable
manifold of the saddle passes through the point p2r of tangency of the vector field with x = 2.
The coordinates of the intersection point are approximately (a, ω) = (2.14190, 1.28447). See
Figure 7.3. The map H has three branches for a to the right of the min tangency curve, and
the homoclinic point is the third intersection of the stable manifold with x = 2. The max
tangency curve where the stable manifold of the saddle passes through the point p2l of tangency
of the vector field with x = 2 crosses the parameter curve where H2 has a min tangency for
2.62 < a < 2.63 (i.e., the point p2r maps to the intersection of W s with x = 2.) This has no
immediate impact upon the bifurcation curves but creates additional discontinuities of H2.
For example, when (a, ω) = (2.63, 1.3084), H2 has eight discontinuities, and its graph has
eight branches (see Figure 7.4). For values of a to the right of the max tangency curve, H
once again has a single discontinuity.

For (a, ω) near (2.66384, 1.30982), the min saddle-node curve appears to end at parame-
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Figure 7.4. Graphs of H (green) and H2 (blue) at a point where H2 has eight branches.

ters where the left homoclinic curve and the max tangency curve have a point of tangential
intersection (see Figure 7.5). Defining equations for this codimension two bifurcation are
based upon the conditions that the stable manifold of the saddle passes through p2l and that
H2(θ2l) = θ2l. The unfolding of the bifurcation depends upon the singularities of H and H2

at the tangency point. These maps can be modeled as the composition of a quadratic folding
map with the power law |u1| = |u0|β/(α+β) as we determined in section 4.2. Thus the compo-
sition is the power law |u1| = |u0|2β/(α+β). Since β = α+1, the exponent is 1+1/(2α+1) > 1,
and the maps H and H2 have zero derivative at the singularity, which is a local maximum.
For values of a smaller than the codimension two point, the homoclinic points lie at the right
endpoint of the branch of H2 to the left of θ2l. This branch has positive slope. For values
of a larger than the codimension two point, the homoclinic points lie at the left endpoint of
the branch of H2 to the right of θ2l. This branch has negative slope, so there can no longer
be a saddle-node bifurcation of these periodic orbits. Instead, there will be a period-doubling
bifurcation curve that lies below (i.e., smaller values of ω) the homoclinic curve. The period-
doubling curve affects the stability of the period 2 orbits and signals the presence of period 4
orbits, but new period 2 orbits are not born at the period-doubling bifurcation.

The next codimension two bifurcation along the period 2 left homoclinic curve is its
crossing of the period 1 right homoclinic curve at a parameter value 2.79 < a < 2.80. Here
there is simultaneously a fixed point at the left end of the branch of H containing θ2l and a
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Figure 7.5. Graphs of H (green) and H2 (blue) near the end of the min saddle-node curve.

homoclinic point of H2 on the branch immediately to the right of the one containing θ2l. For
larger values of a, there is a region of bistability with both a fixed point and a period 2 orbit.

The endpoint of the period 2 left homoclinic curve lies at the codimension two point near
(a, ω) = (3.29725, 1.34782), where the right homoclinic curve of fixed points with circuit num-
ber 1 crosses the left homoclinic curve of fixed points with circuit number 0 (see Figure 7.6).
The period 2 right homoclinic curve also ends at this codimension two point. Apparently,
this codimension two point, defined as a transversal crossing of two codimension one bifurca-
tions, is much more complicated than it seems at first glance. Indeed, we find that there are
perturbations from this parameter value at which the map H has a chaotic invariant set.

7.4. Chaos without canards. The half-return map H appears to have chaotic trajecto-
ries for parameter values (a, ω) ≈ (3.2, 1.34008531). Figure 7.7 shows the graphs of H and
H2, and Figure 7.8 shows detail that illustrates the chaotic invariant set. The parameters
(3.2, 1.34008531) are above the left homoclinic curve of fixed points with circuit number 0 and
below the right homoclinic curve of fixed points with circuit number 1, in the vicinity of the
intersection of these two curves. The branch of H that contains a local minimum has two fixed
points—one stable point and an unstable fixed point θu close to the right end of the branch.
The end of the branch occurs at θ2s1, the first intersection of the stable manifold of the saddle
point p1l with x = 2. The map H is increasing on J = [θu, θ2s1) with H(J) = [θu, θr). Note
that H(J) is bounded on the right by the supremum of H, and on J , H has a single point of
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Figure 7.6. The graphs of H and H2 at the codimension two point of transversal crossing of right and left
homoclinic bifurcations of fixed points.

discontinuity at θ2s1. We follow the interval H(J)− J for two iterates. First, H(H(J)− J) is
an interval whose left endpoint is θl, the infimum of H. For the parameter values that lie on
a right homoclinic curve of fixed points, θl is a homoclinic point of H. For parameter values
below this homoclinic curve, H(θl) lies to the right of the discontinuity point θ2s2, inside the
branch of H with a local minimum. For parameters near (a, ω) = (3.2, 1.34008531), the map
H is decreasing on H(H(J) − J). We find in numerical calculations that there is a value
of ω ∈ (1.34008530, 1.34008531) so that H2(θr) = θu, the unstable fixed point. We observe
that H2(θ+

2s1) ∈ H(J) − J , so H2(H(J) − J) ⊂ H(J). We conclude that the union I of the
two intervals H(J) and H(H(J)− J) is an invariant set for H. Partitioning I into the three
intervals I1 = J , I2 = H(J)−J , and I3 = H(H(J)−J), we have H(I1) = I1∪ I2, H(I2) = I3,
and H(I3) ⊃ I1. This implies that H has a chaotic invariant set that contains a subshift of
finite type [27] with transition matrix 

 1 1 0
0 0 1
1 0 0


 .

It is quite possible that H not only has a chaotic invariant set for the parameters described
above but that I is an attractor. This is true, for example, if the Schwarzian derivative of H
on the interval I is negative. Since the map H can be approximated by functions of the form
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Figure 7.7. The graphs of H and H2 at parameters with an apparent chaotic invariant set.

f(x) = xα and these functions do have negative Schwarzian derivative, we conjecture that
there are parameter values for which H has chaotic attractors. Furthermore, we conjecture
that the set of such parameter values has positive measure.

8. Concluding remarks. This section concludes with remarks about

• the methods we used to compute the values of the half-return map H and the bifur-
cation diagram of the reduced system and

• aspects of the bifurcations of the forced van der Pol equation that are not addressed
by the analysis of the slow flow and the reduced system.

Our computations of the half-return map H were performed by numerical integration
of the slow flow equations (3.1) from initial conditions on S2 to their intersection with the
circle S1. We used variable step size Runge–Kutta methods for these integrations, making the
error tolerances sufficiently stringent that the apparent errors in the calculations were small
enough to produce reliable and robust results. To compute bifurcations of the half-return map
H, these numerical integrations were embedded in algorithms that used Newton’s method to
solve defining equations for each type of bifurcation. For saddle-node bifurcations, the defining
equations were obtained by simultaneously solving the fixed point equation H(θ) = θ and the
equation H ′(θ) = 1. For left homoclinic bifurcations, we computed the intersections (θkl, xkl)
of Ws with the line θ + 0.5 + k = θ1s in the universal cover of the cylinder S1 × R and
then solved the equation xkl = 2 using Newton’s method. For the right homoclinics, we
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Figure 7.8. A closer look at H and H2 for the same parameter values as in Figure 7.7. As in that figure, the
green curves are the graph of H, and the blue curves are the graph of H2. The right interval is H(J) = [θu, θr],
and the left interval is H(H(J) − J) = [θl, H(θr)] (where J = [θu, θ2s1]). The union of these two intervals is
an invariant set. Its return map consists of the branch of H to the left of the discontinuity and the branch of
H2 to the right of the discontinuity. The coordinate values are θu ≈ 0.541589, θ2s1 ≈ 0.542117, θr ≈ 0.550583,
θl ≈ 0.140666, and H(θr) ≈ 0.142859.

computed the intersections (θkr, xkr) of Ws with the line θ + 0.5 + k = θ1u and then solved
the equation xkr = 2. This procedure of integrating the equation to the desired value of
θ and then solving x = 2 gave better results than integrating to x = 2 because the angles
between the vector field and lines of constant θ were much larger than those between the vector
field and the lines of constant x at the bifurcation points. This procedure also avoided the
necessity of distinguishing the type of right homoclinic to be computed. This was determined
after computing the bifurcation point. Similar methods were applied to H2 to compute the
bifurcation curves of period 2 orbits.

The forced van der Pol system is a smooth vector field that does not have discontinuities
of its flow. Asymptotic analysis of the behavior of the flow near the folds of its critical
manifold is needed to interpret what our results say about bifurcations of the forced van der Pol
system. For trajectories that avoid neighborhoods of the folded singularities, classical theory
of singularly perturbed systems [2, 19] can be applied for this purpose. However, the analysis
of trajectories that pass near the folded singularities is complicated. There even remain gaps
in the theory that describes the local geometry of trajectories in the vicinity of the folded
nodes [3, 25, 28]. For the global geometry of the flow, there is another level of phenomena
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that is not touched upon in this paper. In particular, canards are trajectories of the forced
van der Pol system that pass near a folded singularity and then continue along the unstable
sheet of the critical manifold. These trajectories are not approximated by trajectories of the
reduced system as defined here. The canards can be approximated by trajectories of the
slow flow that obey different rules about when they jump from one sheet of the slow flow to
another, and they give rise to a whole new set of geometric structures in the flow of the forced
van der Pol system. The chaotic invariant sets described by Cartwright and Littlewood [8, 9]
consist entirely of trajectories that contain canards. The extension of the half-return map to
include the canard trajectories, the associated bifurcations, and the existence of horseshoes is
addressed in a subsequent paper [4].
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