Section 14.2: Limits and continuity for $z = z(x,y)$

Definition (intuitive): The limit of $z(x,y)$ as (x,y) approaches the point (a,b) is L if the values of $z(x,y)$ can be made arbitrarily close to L by evaluating $z(x,y)$ at all points (x,y) sufficiently close (a,b).

Example 3: $z(x,y) = \frac{x^2 - y^3}{x^2 - y^2}$

Example 4: $z(x,y) = \frac{xy^2}{x^2 + y^4}$

Definition: Let $z(x,y)$ be defined on a domain, D, with (a,b) in D. We say $z(x,y)$ is continuous at (a,b) if $z(a,b)$ agrees with the limit of $z(x,y)$ as (x,y) approaches (a,b). We say $z(x,y)$ is continuous on D if $z(x,y)$ is continuous at every point in D.