2. Let us begin by noting that \(x^2 + 2y^2 = 44 \) is closed and bounded (an ellipse), so we know that both maxima and minima of \(f \) exist on it. To find them, we need to solve the system of equations

\[
3 = \lambda(2x) \quad \text{and} \quad -2 = \lambda(4y) \quad \text{and} \quad x^2 + 2y^2 = 44.
\]

Solving for \(x \) in the first and \(y \) in the second, and substituting into the third, we get \((3/(2\lambda))^2 + 2(-2/(4\lambda))^2 = 44\), or \(1 = 16\lambda^2\), so \(x = \pm 3/(2/4) = \pm 6\) and \(y = \mp 2/(4/4) = \mp 2\), so the critical points are \((6, -2)\) and \((-6, 2)\). Now \(f(6, -2) = 22\) and \(f(-6, 2) = -22\), so \((6, -2)\) is a maximum and \((-6, 2)\) is a minimum.

3. Note first that \(x^2 - y^2 = 1\) is a hyperbola; it isn’t bounded, so there may fail to be either or both a maximum or a minimum value of \(f\) on it. In fact, as \(x\) and \(y\) both increase on one branch (the one asymptotic to \(y = x\) for positive \(x\)-values), we see that \(f\) gets arbitrarily large; so we will not find a global maximum for \(f\) on this curve. But everywhere on the curve we have \(f = (1 + y^2) + y\), which is parabola opening upward; as \(y\) gets large (positive or negative) on all the branches of the hyperbola, \(f\) increases without bound, so there will be a minimum point for \(f\) somewhere on it.

To find it, we need to solve the system

\[
2x = \lambda(2x) \quad \text{and} \quad 1 = \lambda(-2y) \quad \text{and} \quad x^2 - y^2 = 1.
\]

From the first equation, either \(x = 0\) or \(\lambda = 1\). From the third equation, \(x = 0\) gives \(-y^2 = 1\), so there are no solutions. So \(\lambda = 1\), and from the second equation \(y = -1\), so from the third equation \(x = \pm \sqrt{1 + (1/2)^2} = \pm \sqrt{5}/2\). The points \((-\sqrt{5}/2, \pm \sqrt{5}/2)\) both make \(f = \frac{3}{4}\), so they are both the desired minima.

10. The region \(x^2 + y^2 + z^2 = 1\) is closed and bounded (a sphere) so \(f\) does have maximum and minimum values on it. To find them, we need to solve the system

\[
2x = \lambda(2x) \quad \text{and} \quad -2 = \lambda(2y) \quad \text{and} \quad 4z = \lambda(2z) \quad \text{and} \quad x^2 + y^2 + z^2 = 1.
\]

From the first equation, either \(\lambda = 1\) or \(x = 0\); and from the third either \(\lambda = 2\) or \(z = 0\). From the second equation \(y = -1/\lambda\). So substituting into the fourth equation gives one of the following:

\[
\begin{array}{ccc}
\lambda &=& 1, \quad y = -1, \quad z = 0 \\
\lambda &=& 2, \quad y = -\frac{1}{2}, \quad x = 0 \\
x^2 + (-1)^2 + 0^2 &=& 1 \\
x &=& 0 \\

z &=& \pm \sqrt{3}/2 \\
y &=& 1 \quad \text{(not } -1: \lambda \neq 1) \\
\end{array}
\]

So the critical points are \((0, \pm 1, 0)\) and \((0, -\frac{1}{2}, \pm \sqrt{3}/2)\). We have \(f(0, -1, 0) = 2\), \(f(0, 1, 0) = -2\) and \(f(0, -\frac{1}{2}, \pm \sqrt{3}/2) = \frac{5}{2}\), so \((0, -\frac{1}{2}, \pm \sqrt{3}/2)\) are maxima and \((0, 1, 0)\) is a minimum.

14. The region on which we are to extremize \(f\) is shaded:

It is unbounded, so \(f\) may not attain maximum and/or minimum values on it. In fact, if we fix \(y = 0\)
18. We want to minimize \(f \) which it may do in the region; the positive \(x \)-axis is in it, we see that \(f \) can get arbitrarily large, so \(f \) has no maximum. Similarly, if we let \(y \) get large (positive) and take \(x = \sqrt{y} \) (along one edge of the region), then \(f = y - y^2 \) (in the \(yf \)-plane, a parabola opening downward), which can take on arbitrarily large negative values; so \(f \) also has no global minimum on the region. So all we might find are local extrema.

To do so, first we consider unconstrained critical points: \(2x = 0 \) and \(-2y = 0 \) when \(x = y = 0 \), on the edge of the legal region anyway. So we look for critical points of \(f \) subject to \(x^2 - y = 0 \): Solve the system

\[
2x = \lambda (2x), \quad -2y = \lambda (2y), \quad x^2 = y
\]

to get either \(x = 0 \) (and then \(y = 0 \) also) or \(\lambda = 1 \) (and then \(y = 1/2 \) and \(x = \pm 1/\sqrt{2} \)). We have \(f(0,0) = 0 \) and \(f(\pm 1/\sqrt{2}, 1/2) = 1/4 \), so \((0,0) \) is a local minimum on \(x^2 = y \) and \((\pm 1/\sqrt{2}, 1/2) \) are local maxima on that curve. Are they at least local extrema for the whole region \(x^2 \geq y \)? I.e., for example, if we move into the region \(x^2 > y \) a small distance from \((0,0)\), does \(f \) increase from 0? The answer is no: If we fix \(x = 0 \) and take a small negative \(y \) (which is in the region), then \(f < 0 \). And if we move into that region away from \((\pm 1/\sqrt{2}, 1/2) \), does \(f \) decrease? This answer is no: If we fix \(y = 1/2 \) but take \(x \) slightly larger than \(1/\sqrt{2} \) or slightly smaller than \(-1/\sqrt{2} \), then \(f \) is larger than \(1/4 \). So the points we found are not even local extrema on the region.

17. The region \(x^2 + y^2 \leq 1 \) is closed and bounded, so \(f \) will have maximum and minimum values on it somewhere. First we find the unconstrained critical points: \(3x^2 = 0 \) and \(-2y = 0 \) when \(x = y = 0 \), and that is a point properly inside the legal region. [Note that \(D = (6x)(-2) - 0^2 = -12x \) is 0 at \((0,0)\), so the second derivative test doesn’t help classify this extremum. It turns out to be a saddle point, but we know there are global extrema to be found, so we’ll treat it as a candidate and test it with the others.] Turning to the edge of the region, we extremize \(f \) subject to \(x^2 + y^2 = 1 \): Solve the system

\[
3x^2 = \lambda (2x), \quad -2y = \lambda (2y), \quad x^2 + y^2 = 1 .
\]

From the first equation, either \(x = 0 \) or \(\lambda = \frac{3}{2} \); and from the second either \(y = 0 \) or \(\lambda = -1 \). So substituting into the third equation gives one of the following:

- \(x = 0 \)
- \(0^2 + y^2 = 1 \)
- \(y = \pm 1 \)
- \(x = \pm \frac{3}{2} \)
- \(x = \pm \frac{3}{2} \)
- \(y = \pm \frac{3}{2} \)

Now \(f(0,0) = 0 \), \(f(0, \pm 1) = -1 \), \(f(1,0) = 1 \), \(f(-1,0) = -1 \) and \(f(-2/3, \pm \sqrt{5}/3) = -23/27 \) so \((1,0)\) is a (global) maximum and \((-1,0)\) and \((0, \pm 1)\) are (global) minima.

18. We want to minimize \(C = 20x + 10y + 5z \) subject to \(1200 = 20x^{1/2}y^{1/4}z^{3/5} \), or more simply \(x^{1/2}y^{1/4}z^{3/5} = 60 \). So we need to solve the system

\[
20 = \lambda \left(\frac{1}{2} x^{-1/2} y^{1/4} z^{2/5} \right), \quad 10 = \lambda \left(\frac{1}{4} x^{1/2} y^{-3/4} z^{2/5} \right), \quad 5 = \lambda \left(\frac{2}{5} x^{1/2} y^{1/4} z^{-3/5} \right) , \quad x^{1/2} y^{1/4} z^{3/5} = 60 .
\]

Multiplying the first of these by \(2x \), the second by \(4y \) and the third by \(\frac{5}{2} z \) shows that \(40x \), \(40y \) and \(25z \) are all equal to \(\lambda x^{1/2} y^{1/4} z^{2/5} \), so they are equal to each other: \(x = y = \frac{5}{16} z \). Substituting into the fourth equation gives

\[
\left(\frac{5}{16} \right)^{1/2} \left(\frac{5}{16} \right)^{1/4} z^{2/5} = 60 \Rightarrow \left(\frac{5}{16} \right)^{3/4} z^{3/5} = 60
\]

\[
z = \left(60 \left(\frac{16}{5} \right)^{3/4} \right)^{20/23} \approx 75.1
\]
and \(x = y \approx \frac{3}{\pi^2} \) \(\approx 23.5 \).

23. Denote the radius, height and surface area of the cylinder by \(r \), \(h \) and \(A \) respectively. We want to minimize \(A = 2\pi r^2 + 2\pi rh \) subject to \(\pi r^2 h = 100 \), so we need to solve

\[
4\pi r + 2\pi h = \lambda (2\pi rh), \quad 2\pi r = \lambda (\pi r^2), \quad \pi r^2 h = 100;
\]

or more simply

\[
2r + h = \lambda rh, \quad r(2 - \lambda r) = 0, \quad \pi r^2 h = 100.
\]

From the second equation, because \(r = 0 \) is impossible (the cylinder must have a positive radius to have a volume), we see that \(\lambda r = 2 \), and substituting this into (the simpler version of) the first equation gives \(2r + h = 2h \), or \(h = 2r \). Substituting this into the third equation gives \(2\pi r^3 = 100 \), or \(r = (50/\pi)^{1/3} \); and then \(h = 2(50/\pi)^{1/3} \).