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Abstract

Let N be an odd perfect number and let a be its third largest prime divisor, b be the
second largest prime divisor, and c be its largest prime divisor. We discuss steps
towards obtaining a non-trivial upper bound on a, as well as the closely related
problem of improving bounds for bc and abc. In particular, we prove two results.
First, we prove a new general bound on any prime divisor of an odd perfect number
and obtain as a corollary of that bound that a < 2N

1
6 . Second, we show that

abc < (2N)
3
5 . We also show how in certain circumstances these bounds and related

inequalities can be tightened. Define a σm,n pair to be a pair of primes p and q
where q|σ(pm) and p|σ(qn). Many of our results revolve around understanding σ2,2
pairs. We also prove results concerning σm,n pairs for other values of m and n.

1. Introduction

Let N be an odd perfect number. Assume that N = p1
a1p2

a2 · · · pkak where

p1, p2, · · · , pk are primes satisfying p1 < p2 < p3 < · · · < pk. Acquaah and Konyagin

[1] proved that one must have

pk < (3N)1/3. (1)

The third author [11] proved that

pk−1 < (2N)1/5. (2)

1This paper was primarily written while the third author was a lecturer at Iowa State University.
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In this article we prove that pk−2 < (2N)1/6 and discuss possible directions for

further improvement. Iannucci [5] proved a lower bound of pk−2 > 100.

In [11], the third author also proved that

pkpk−1 < 61/4N1/2. (3)

Using closely related techniques, Luca and Pomerance [10] proved that

p1p2p3 · · · pk < 2N
17
26 .

That result was subsequently improved by Klurman [6] who replaced the exponent

of 17
26 with 9

14 . Klurman’s improvement of the exponent came at the cost of replacing

the 2 in front with a non-explicit constant. A long-term goal of many researchers

has been to try to show that one in fact has

p1p2 · · · pk < N
1
2 . (4)

A large amount of computation has been expended on showing that an odd perfect

number which violates Inequality (4) must be very large and have very large prime

factors (see [4], [9]).

Euler proved the following result which is often the starting point for any work

on odd perfect numbers.

Lemma 1. If N is an odd perfect number then we have N = pem2 for some prime

p where (p,m) = 1 and p ≡ e ≡ 1 (mod 4).

We will refer to the prime raised to an odd power in the factorization of N as

the “special prime”. It follows immediately from Euler’s result that one must have

pk−2 < N1/5. More generally, it follows immediately from Euler’s theorem that for

all i with 1 ≤ i ≤ k,

pk−i < (2N)
1

2i+1 .

It is worth realizing how weak a result Euler’s result is; Euler’s result applies not

just to odd perfect numbers, but to any odd number n where σ(n) ≡ 2 (mod 4).

We will for the remainder of this paper, when convenient, use a slightly different

notation for an odd perfect number which will allow us to avoid the frequent use

of subscripts. In particular, we will also write a = pk−2, b = pk−1, and c = pk.

For a prime p and integers n and s, we will write ps||n to mean that ps|n and that

ps+1 - n. When this is the case we will refer to ps as a component of n.

We first note that we have the following upper bound on any prime factor.

Theorem 2. Let N be an odd perfect number. We have for any integer i with

0 ≤ i ≤ k − 1,

pk−i < (2N)
1

2i+2 .
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Proof. We note that for i = 0, this result is a corollary of Acquaah and Konyagin’s

bound. For i = k−1, the result follows from the well known fact that an odd perfect

number must be divisible by a fourth power of a prime. Suppose that 1 ≤ i ≤ k−2.

Consider

M =
∏

k−i≤j≤k

p
aj
j .

Note that M must be deficient since it is a proper divisor of a perfect number.

Thus, one must have M < σ(M) < 2M . Thus, there exists j such that j ≥ k − i
and satisfying p

aj
j - σ(M). Since N is perfect, but any proper divisor is deficient,

there is some ` < k − i such that pj |σ(pa`` ). Hence, pa`` > 1
2pk−i. We then have(

1

2
pk−i

)
p
ak−i
k−i p

ak−i+1

k−i+1 · · · p
ak
k < pa`` M ≤ N.

Lemma 1 implies that at most one of our exponents am can be 1, and thus we have

(1/2)p2i+2
k−i <

(
1

2
pk−i

)
p
ak−i
k−i p

ak−i+1

k−i+1 · · · p
ak
k .

From the above inequalities we then have that

(1/2)p2i+2
k−i < N,

and hence pk−i < (2N)
1

2i+2 .

We will make frequent use of the argument used here where N being perfect will

force the existence of an additional component to supply a prime to σ(N). We will

refer to this as an m-type argument.

We then obtain an immediate consequence of Theorem 2.

Corollary 3. We have a < 2N
1
6 .

Many of the prior results on upper bounding the larger prime factors of an odd

perfect number can be thought of as statements that involve restrictions on what

a σm,n pair can look like. By a σm,n pair we mean a pair of primes p and q where

q|σ(pm), and p|σ(qn).

Consider the following Lemma from [11].

Lemma 4. If p and q are positive odd integers such that q|p2 + p+ 1 and p|q + 1,

then we must have (p, q) = (1, 1) or (p, q) = (1, 3).

Lemma 4 leads to the result that there are no σ1,2 pairs. Note that a σm,n pair

has a graph-theoretic interpretation: Given an odd perfect number pa11 p
a2
2 · · · p

ak
k ,
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we can construct a directed graph where, for every i with 1 ≤ i ≤ k, each vertex is

labeled with pi. For vertices with labels pi and pj , there is an arrow from a vertex

pi to a vertex pj if pi|σ(p
aj
j ). We can give a weight m to each directed edge, where

pmi ||σ(p
aj
j ).

A σm,n pair corresponds to a 2-cycle in this graph. Note that other results about

odd perfect numbers can be thought of as statements about this graph; for example,

see Theorem 2 of [3].

One of the primary obstructions to proving strong results is the possibility of the

presence σ2,2 pairs. That is, primes p and q where p|q2 + q + 1 and q|p2 + p + 1.

Examples are (3, 13) and (13, 61). If these were the only σ2,2 pairs, much of what we

do here would be simplified. Unfortunately, there is at least one very large solution:

(p, q) = (22419767768701, 107419560853453).

We will define a quasisolution to be a pair of positive integers p and q where

p|q2 + q + 1 and q|p2 + p + 1. Notice that we do not require the p and q in

a quasisolution to be prime. One major step in understanding σ2,2 pairs is to

completely classify quasisolutions.

Lemma 5. Let p and q be positive integers. Then p, q form a quasisolution if, and

only if, they satisfy

5pq = p2 + q2 + p+ q + 1. (5)

Every quasisolution is given by a consecutive pair of terms in the sequence given by

t1 = t2 = 1 and with

tn+2 =
t2n+1 + tn+1 + 1

tn
.

Finally, we have

4tn < tn+1 < 5tn (6)

for all n > 3.2

Proof. It is immediate that if p and q satisfy Equation 5, then p|q2 + q + 1 and

q|p2 + p + 1 and hence they are a quasisolution. If (p, q) is a quasisolution with

p < q, and d = q2+q+1
p , then a little algebra shows that (q, d) is a quasisolution with

q < d. Thus, given a quasisolution, we can repeatedly apply this process to get a

chain of quasisolutions which we will call a quasichain. For any such quasichain, we

have p2+q2+p+q+1
pq = q2+d2+q+d+1

qd . Thus, for any quasisolution, we may look at the

quantity

m(p, q) =
p2 + q2 + p+ q + 1

pq

2Versions of Lemma 5 have been proven in other locations also. See, for example [7], which
proves a more general result. Interest in σ2,2 pairs has also arisen in at least one other completely
different context. See [2].
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which is an invariant for the entire quasichain. So, if we can prove that every

quasisolution arises from the quasichain which starts off with p = 1, q = 1 then we

are done.

Let xn be a chain of quasisolutions. Note that by rearranging our definition of

how to extend a quasichain we have that

xn =
x2n+1 + xn+1 + 1

xn+2
. (7)

Note also that every member of a quasichain must be odd (because for any integer

t, t2 + t + 1 is odd). If xn+1 and xn+2 are both greater than 1, then it is easy to

check that xn is positive and satisfies xn < xn+1 + 2. Since both xn and xn + 1 are

odd, one must have xn ≤ xn+1, and it is easy to see that equality can occur only

when xn = xn+1 = 1. Thus, by the well-ordering principle for any chain we can

keep taking smaller and smaller elements until we reach a lowest term. This term

must be of the form (1, x) for some x. Such a term must satisfy x|12 + 1 + 1 = 3.

So the only possible options for x are x = 1 and x = 3. Since these are the first

two terms of the chain which starts with (1, 1), we have proven the first part of the

Lemma.

Once we have that all quasisolutions arise this way, Inequality (6) arises from a

straightforward induction argument.

For the remainder we will write tn to denote the sequence formed by the chain

of quasisolutions. That is, t1 = 1, t2 = 1, and in general

tn+2 =
t2n+1 + tn+1 + 1

tn
.

We will use this characterization of quasisolutions to substantially restrict what

σ2,2 pairs can look like. Before we do so, we note that the characterization of

quasisolutions allows one to easily search for σ2,2 pairs. A computer search shows

that after the large pair mentioned above, there are no σ2,2 pairs below 104000.

Let w be a positive integer where w has no prime divisors which are congruent

to 1 modulo 3. One can easily see that the sequence xn (mod w) is periodic.

Moreover, xn (mod w) will always have a symmetry to it. We will not need this

general symmetry, but it is worth noting and is well illustrated by w = 11. We have

(mod 11) the sequence

1, 1, 3, 2, 6, 5, 7, 7, 5, 6, 2, 3, 1, 1 · · · .

Notice that after we reach the pair of 7s, the sequence repeats itself in reverse order

until reaching 1, 1, where the pattern will then restart. This is due to the symmetry

in the definition of our recursion. In particular, note that

tntn+2 = t2n+1 + tn+1 + 1.
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We also note that we have the following other behavior: tn ≡ 1 (mod 4) except if

n ≡ 0 (mod 3). Similarly, tn ≡ 1 (mod 3) except when n ≡ 0 (mod 3), in which case

tn ≡ 0 (mod 3). Thus, we immediately have that any σ2,2 pair must have p ≡ q ≡ 1

(mod 4).

We note that mod 5, the sequence has period 4 with tn ≡ 1 when n ≡ 1 or 2

(mod 4), and tn ≡ 3 when n ≡ 3 or 0 (mod 4).

Lemma 6. There are no primes p and q with p2|q2 + q + 1 and q|p2 + p+ 1.

Proof. Assume we have such a pair. Note that p and q must be both 1 (mod 3)

(since any divisor of n2 + n + 1 is 1 or 0 mod 3). So we have 3p2|q2 + q + 1, and

3q|p2 + p + 1. We will choose k such that kp2 = q2 + q + 1. First consider the

possibility that k = 3, that is, 3p2 = q2 + q + 1.

Then

5pq = q2 + q + 1 + p2 + p = 3p2 + p2 + p = 4p2 + p.

Thus, we have

5q = 4p+ 1.

Since q|4p+ 1 and q|p2 + p+ 1, we have that

q|4(p2 + p+ 1)− p(4p+ 1) = 3p+ 4.

Since q|3p+ 4 and q|4p+ 1, we must have

q|4p+ 1− (3p+ 4) = p− 3

which is impossible since q > p.

Thus, we may assume that kp2 = q2+q+1 for some k > 3. Note that k ≡ 3 (mod

6). Note also that k 6≡ 0 (mod 9) since n2 + n + 1 ≡ 0 (mod 9) has no solutions.

Also, k cannot be divisible by 5, since 5 ≡ 2 (mod 3). Thus, we have that k ≥ 21.

Let us assume that k = 21. We then have that 21p2 = q2 + q + 1, and using

similar logic as before, we have that

5pq = 21p2 + p2 + p = 22p2 + p.

We thus have

5q = 22p+ 1.

We then obtain a contradiction very similarly to how we obtain a contradiction for

k = 3. Since q|22p+ 1 and q|p2 + p+ 1, we have that

q|(22p2 + 22p+ 22)− p(22p+ 1) = 21p+ 22.

Thus, q|(22p + 1) − (21p + 22) = −21, and we can check that neither q = 3 nor

q = 7 works.



INTEGERS: 21 (2021) 7

Thus, we have that k 6= 21. The next acceptable value for k is k = 33 (we cannot

have k = 27 since 9|27). So, k ≥ 33. We then have that

33p2 ≤ q2 + q + 1

which implies that q > 5p and hence contradicts Inequality (6).

Lemma 6 has a graph theoretic interpretation in that the graph of an odd perfect

number cannot have a pair of vertices x and y, each with out-degree 2, with vertex

x pointing to vertex y and with y pointing only to vertex x.

Lemma 6 also naturally leads to the next Lemma.

Lemma 7. There are no primes p, q, r with pr|q2 + q+ 1, q|p2 + p+ 1, p|r+ 1, and

r ≡ 1 (mod 4).

Proof. Assume we have three such primes. Note that the first and third division

relations imply that we must have p < q. We may also, by a straightforward

computation, assume that q > p > 21.

We have yp = r + 1 for some y ≡ 0 (mod 2). We have prx = q2 + q + 1 for

some x with x ≡ 0 (mod 3), and we have p ≡ q ≡ r ≡ 1 (mod 3). Note that we

cannot have x ≡ 0 (mod 9), and we cannot have 5|x, since there are no solutions to

q2 + q + 1 ≡ 0 (mod 5). Thus, if x 6= 3, we must have x ≥ 21. But if we are in this

situation we can use that p > 21 to obtain

41p2 < 21p(2p− 1) ≤ q2 + q + 1,

which implies that 5p < q. But that contradicts Inequality (6), since p and q are

a quasisolution. Thus, we must have x = 3. Similarly, we must have y ≡ 2 (mod

4). So, if y > 2, then one must have either y = 6 or y ≥ 10. y = 6 leads to a

contradiction since q2 + q + 1 would then have a 2 (mod 3) divisor, so one would

need to have y ≥ 10. Since p > 21 one has

29p2 < 3p(10p− 1) ≤ q2 + q + 1,

which implies that 5p < q which again leads to a contradiction with Inequality (6).

Thus, we must have x = 3 and y = 2. We then have 3p(2p− 1) = q2 + q + 1 which

implies that 4p < q, which again contradicts Inequality (6).

But we also have 3p|q2+q+1 which forces 3p ≤ q2+q+1. These two inequalities

together form a contradiction.

The reader is invited to think about the graph theory interpretation of Lemma

7.

We also have the following result.
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Lemma 8. Assume that p, q and r are distinct odd primes. Assume further that

p and q are a σ2,2 pair, and that q and r are also a a σ2,2 pair. Then {p, q, r} =

{3, 13, 61}.

Proof. This follows immediately from considering tn (mod 3).

In graph terms, Lemma 8 says that we cannot have three vertices x, y and z,

each of out-degree 2 where x and y both point to each other and y and z both point

to each other unless they arise from the triplet {3, 13, 61}.
We will also mention here three questions related to our results with σ2,2 pairs. A

general question of interest is how similar results are for other σm,m pairs. We can

similarly define quasisolutions for σm,m pairs in an analogous way. In that context,

define tm,n via the relationship, tm,1 = tm,2 = 1 and for n > 2,

tm,n+1 =
tm+1
m,n − 1

(tm,n − 1)tm,n−1
.

Note that we have t2,n = tn in our earlier notation.

One obvious question in this context then is: if m+ 1 is prime, is it true that all

quasisolutions for σm,m pairs arise from tm,n? The answer here is no. In the case

when m = 4, we have that (1, 1), (5, 11), (61, 131), and (101, 491) all produce their

own chain of solutions.

We will note here three open questions.

First, we tentatively suspect the following conjecture.

Conjecture 9. If p and q are a σ2,2 pair, then p2+p+1 and q2+q+1 are squarefree.

Note that if Conjecture 9 is true this would trivially imply Lemma 6.

Second, we also suspect the following statement. Let L(n) be the largest square

divisor of t2n + tn + 1. Then for any ε > 0, we have L(n) = O(tεn). Note that

even getting an explicit bound for some reasonably small fixed epsilon would be

interesting and useful for tightening the results in this paper. Similarly, let S(n) be

the largest square divisor of ((tn)2 + tn+ 1)((tn+1)2 + tn+1 + 1). it seems likely that

there is a constant C such that for all n we have S(n) ≤ Ctn+1, and we can likely

take C = 1.

Third, we have the following question. Are there infinitely many σ2,2 pairs? We

strongly suspect that the answer is no. We have the following heuristic: Inequality

(6) implies that tn grows at least like 4n. The probability that tn is prime should

be bounded above by 1
log 4n = 1

(log 4)n . Thus, the probability that both tn and tn+1

are prime should be bounded above C
n2 for some constant C. But

∑∞
n=1

C
n2 is a

convergent series, so if we go out far enough, the probability that there are any

more such pairs should get very small.
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Finally, in our last remark concerning σ2,2 pairs, we prove one more minor result.

We do not need this result here, but include it for three reasons. First, this lemma

would likely be useful for extending the results in this paper or tightening those

results. Second, this lemma can be thought of as a substantial restriction on what

the graph of an odd perfect number can look like. Third, this lemma itself is an

interesting restriction on what σ2,2 pairs look like.

Lemma 10. Suppose that p and q are a σ2,2 pair. Then either (p2+p+1, q2+q+1) =

3(7m) for some non-negative integer m, or we have {p, q} = {3, 13}, in which case

(p2 + p+ 1, q2 + q + 1) = 1.

Proof. Assume that p and q are a σ2,2 pair. The case when {p, q} = {3, 13} is a

straightforward calculation, so assume without loss of generality that 3 < p < q.

Note that 3|q2 + q+ 1 and 3|p2 + p+ 1. Now, we will assume that k is a prime such

that k|p2 + p + 1 and k|q2 + q + 1 and we will show that k = 3 or k = 7. Since

n2 + n+ 1 6≡ 0 (mod 9) for any n, this will suffice to prove the result.

We have from Equation 5 that

p2 + p+ 1 = 5pq − q2 − q

and hence

k|(5pq − q2 − q) = q(5p− q − 1).

By the same logic we have that

k|(5pq − p2 − p) = p(5q − p− 1).

Since (k, pq) = 1 we have k|5q − p− 1 and k|5p− q − 1. We then have

k|(5p− q − 1)− (5q − p− 1) = 6(p− q).

Since k must be odd, we have then k|3(p− q). So either k = 3 or k|(p− q). For the

remainder of this proof, we will assume that k 6= 3, and so k|(p− q). We also have

k|(5p− q − 1) + (5q − p− 1) = 2(2p+ 2q − 1).

Hence, k|2p+ 2q − 1, and so

k|(2p+ 2q − 1) + 2(p− q) = 4p− 1.

Then,

k|(p2 + p+ 1) + (4p− 1) = p(p+ 5).

Since (k, pq) = 1, we have then k|(p+ 5), and so

k|(p2 + p+ 1)− (p+ 5)2 + 9(p+ 5) = 21,

and hence k = 7.
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Note that the above proof can be modified to show that if we have p and q a

quasisolution, then (q2 + q + 1, p2 + p+ 1)|3(7m) for some non-negative integer m.

We also need the following result which concerns σ4,1 pairs.

Lemma 11. If p and q are odd primes, with p|q+ 1 and q|σ(p4), then we have that

p2 - (q + 1).

Proof. Assume that p and q are odd primes. Assume also that p2|q+1, and q|σ(p4).

We can easily check that we must have

q > p ≥ 7.

We may choose m such that p2m = q + 1. We then have

q|
(
m
(
p4 + p3 + p2 + p+ 1

)
− p2

(
p2m− 1

)
− p

(
p2m− 1

)
−
(
p2m− 1

))
.

This is the same as

q|(mp+m+ p2 + p+ 1).

We have that

q ≤ q + 1

p
+
q + 1

p2
+
q + 1

m
+
q + 1

mp
+ 1 ≤ (q + 1)

(
1

7
+

1

49
+

1

2
+

1

14

)
+ 1 < q.

which is a contradiction.

Before we continue, we note two arguments we will frequently make which are

simple enough that neither rise to the level of a lemma. However, both are worth

noting explicitly.

First, when we have two odd primes x and y and x < y, we must have y - σ(x),

since this would force y ≤ x+1
2 < x < y.

Second, and in similar vein, if we have three odd primes, x, y, and z with

x < y ≤ z, then we cannot have yz|σ(x2), since

yz ≥ (x+ 2)2 = x2 + 4x+ 4 > x2 + x+ 1 = σ(x2).

Finally, note that we will occasionally need the fact that any odd perfect number

has at least four distinct prime divisors, and on one occasion we will use the fact

that an odd perfect number must have at least five distinct prime divisors. In that

context, we note that the best current result in this direction is Nielsen’s result [8]

that an odd perfect number must have at least ten distinct prime factors.

2. Bounding abc

Before we prove the main result, we prove an easier bound on abc, similar to how

we proved Theorem 2. The proof of the main result uses a similar method. The



INTEGERS: 21 (2021) 11

main result is substantially easier to follow if one first proves this weaker result,

which demonstrates many of the central ideas behind the main theorem.

Theorem 12. We have abc < 2
5
12 3

7
36N

11
18 .

Note that 2
5
12 3

7
36 = 1.6527 · · · , so a slightly weaker but cleaner version of this

statement is that abc < 2N
11
18 .

Before we prove Theorem 12, a few remarks on our tactics. We will have a few

easy cases. The harder cases will involve obtaining a series of inequalities which

are linear in log a, log b, log c, and logN . We will then take a linear combination of

those inequalities to get the inequality from Theorem 12. The choices of coefficients

for the linear combinations may appear to the reader as having arisen with no

motivation. However, they were obtained by performing linear programming on

the dual of the system of linear inequalities. This linear programming then gives

optimal linear combinations to prove the best cost inequalities. We will also need

to rewrite some of our earlier inequalities as linear combinations in this way. For

the remainder of this section we will write α = log a, β = log b, and γ = log c. We

then have the following inequalities.

Acquaah and Konyagin’s Inequality (1) is equivalent to

3γ ≤ logN + log 3. (8)

Similarly, Inequality (3) is equivalent to

2β + 2γ ≤ logN +
1

2
log 6. (9)

Much of the proof of Theorem 12 will be encapsulated in the following lemma.

Lemma 13. If we have a3b2c ≤ 2N then

abc ≤ 2
5
12 3

7
36N

11
18 .

Proof. Assume that we have a3b2c ≤ 2N . Then, using our earlier notation, this is

the same as

3α+ 2β + γ ≤ logN + log 2. (10)

We then add our inequalities as follows (with each equation’s number in bold). We

take 1
98 + 1

69 + 1
310, which yields

α+ β + γ ≤ 11

18
logN +

5

12
log 2 +

7

36
log 3

which is equivalent to the desired inequality.
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We are now ready to prove Theorem 12.

Proof. If we have a2|N , b2|N and c2|N , then we have a2b2c2 < N and hence abc <

N1/2. We thus may assume that of a, b and c one of them is the special prime and

is raised to the first power (by Lemma 1 an odd perfect number has exactly one

prime raised to the first power). We will assume that c is the special prime; the

cases where a or b is the special prime look nearly identical. If a or b is raised to a

power higher than the second, we have either a4|N or b4|N .

If we have a4|N , then we have a4b2c|N and so

a3b2c < a4b2c ≤ N < 2N.

Hence, we may invoke Lemma 13. Similarly, if we have b4|N , then we have

a3b2c < a2b4c ≤ N < 2N

and we may then again invoke Lemma 13. Thus, we may assume that we have

a2||N and b2||N . Since an odd perfect number must have more than three distinct

prime factors, a2b2c is a proper divisor of N . Because any proper divisor of a perfect

number must be deficient, a2b2c must be deficient. We may then use an m-type

argument. In particular, we must have σ(a2b2c) < 2σ(a2b2c), and thus there is a

prime p, where p ∈ {a, b, c}, and a component mp of N such that (mp, abc) = 1,

and p|σ(mp). Since mp is a power of an odd prime we have that

p

mp
≤ σ(mp)

mp
<

3

2
,

and thus

p <
3

2
mp.

Since p ≥ a, we have that mp ≥ 3
2a. Since mp|N , and (mp, abc) = 1, we have(

3

2
a

)
a2b2c < mpa

2b2c ≤ N

and so

a3b2c <
2

3
N < 2N

which allows us to use Lemma 13, completing the proof.

We are now in a position to state and prove the main theorem.

Theorem 14. We have abc < (2N)
3
5 .
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For convenience we will prove Theorem 14 as a series of separate propositions.

We will note for convenience that we also have the trivial inequalities

α− β < 0, (11)

and

β − γ < 0. (12)

Also note that Inequality (2) is equivalent to

5β ≤ logN + log 2. (13)

Proposition 15. If a4|N , b4|N or c4|N then we have abc < 2
7
20 3

13
60N

17
30 .

Proof. Assume that at least one of a4, b4 or c4 divides N . By the same logic as in

the proof of Theorem 12, we must have

a5b2c < 2N.

We then have

5α+ 2β + γ < logN + log 2. (14)

We take 1
158 + 3

109 + 1
514, which yields

α+ β + γ ≤ 17

30
logN +

13

60
log 3 +

7

20
log 2,

which yields the desired inequality.

Proposition 16. Assume that a2|N , b2|N and c2|N . Then abc < N1/2

Proof. This lemma essentially amounts to just observing that a2b2c2 < N and then

taking the square root of both sides.

Strictly speaking, we do not need the next result, but it may be of interest to see

how far we can push the above.

Proposition 17. Assume that a2||N , b2||N and c2||N . Then

abc < 2
1
3 3

1
18N

17
36 .

Proof. Assume that a2||N , b2||N and c2||N . We can use an m-type argument to

obtain that

a3b2c2 < 2N

which becomes

3α+ 2β + 2γ < logN + log 2. (15)
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Note that c2 - σ(b2). Note also that we cannot have c2|σ(a2), nor can we have

b2|σ(a2) or bc|σ(a2). If we have c - σ(b2), then we have that

b4c2 < (b2σ(b2)c2)|N

and therefore

4β + 2γ ≤ logN. (16)

We then take 1
188 + 1

315 + 1
1216 which yields

α+ β + γ <
17

36
logN +

1

18
log 3 +

1

3
log 2,

which is equivalent to the desired inequality.

Thus, we may assume that we are in the situation where c|σ(a2) and b 6 |σ(a2).

Since we cannot have c2 - σ(a2) we can then use an m-component argument to get

that

a2b2c3 < 2N

or equivalently, that

2α+ 2β + 3γ < logN + log 2. (17)

We then take as our sum 1
711 + 2

712 + 3
717, which yields

α+ β + γ ≤ 3

7
logN +

3

7
log 2.

This is the same as

abc < (2N)
3
7 ,

which implies the desired inequality.

We have completely handled the situation where c - σ(b2). We may now assume

that c|σ(b2). Again, note that we must have c2 - σ(b2). Note that if we have

b - σ(c2), then we have

b3c3 < (bσ(c2)σ(b2)c)|N,

which implies

3β + 3γ ≤ logN. (18)

We take then as our sum 1
315 + 1

918 which yields

α+ β + γ <
4

9
logN +

1

3
log 2

which implies the desired inequality.
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We may thus assume that b|σ(c2). So b and c form a σ2,2 pair. By Lemma 6, we

have b2 - σ(c2), and so

(bσ(b2)cσ(c2))|N

Note that if a|σ(c2), then, since b and c form a σ2,2 pair, we cannot have a and

c be a σ2,2 pair since if they were, we would have a = 3 by Lemma 8. But we must

have a > 100 due to Iannucci’s result, so this is impossible.3 Thus, in this case we

may assume that c - σ(a2). An m-type argument gives us again that

a2b2c3 < 2N

and our logic then goes through as before to obtain the result that

abc < (2N)
3
7 .

We may thus assume that a - σ(c2).

Now, consider what a may divide. If (a, σ(b2)σ(c2))=1 then we have

a2bσ(b2)cσ(c2)|N,

which yields that

2α+ 3β + 3γ < logN. (19)

We may take as our sum 1
812

1
411 + 3

819 to get that

α+ β + γ <
17

36
logN.

We then have that

abc < N
17
36 .

We may thus assume that either a|σ(b2) or a|σ(c2). We will only look at the

first case (the second case is nearly identical). If this is true, then by Lemma 8, we

have that b - σ(a2) and by Lemma 6 that b2 6 |σ(c2), so we may make an m-type

argument to obtain that

a2b3c2 < 2N,

which we have already seen is an inequality strong enough to obtain our result.

Note that if we knew Conjecture 9 was true, then the above proposition could

very likely be tightened.

We are now in a position where the only remaining cases to be considered are

those in which one of a, b or c is raised to the first power and the other two are

raised to the second.
3An alternate way of reaching a contradiction here is to note that if the third largest prime

factor were 3, then N would only have three distinct prime factors.
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Proposition 18. If a||N , b2||N and c2||N , then

abc < N
1
2 .

Proof. Assume that a||N , b2||N and c2||N . Since a+1
2 < a < b < c, we have that

that b - σ(a) and c - σ(a). Hence,

a2b2c2 < (aσ(a)b2c2)|N,

from which the result follows.

Proposition 19. Suppose that a2||N , b||N and c2||N . Then we have

abc < 2N
11
20 .

Proof. First, note that c - σ(b), since c > b > b+1
2 .

We will first consider the situation where a2|σ(b). In that situation we have a2 <
b+1
2 < b, and thus we also have b - σ(a2). Note that we also have a2 + a+ 1 < b < c

and so we have c - σ(a2). We then have

a2b2c2 < (σ(a2)bσ(b)c2)|(2N).

We then have

abc < (2N)
1
2 .

We may thus assume that a2 - σ(b).

If a - σ(b), then we have

a2b2c2 < (a2bσ(b)c2)|(2N),

and hence we get the same bound as before. That is,

abc < (2N)1/2.

We may thus assume that a||σ(b).

By Lemma 4, we have that b - σ(a2). We also have that c2 - σ(a2) (since this

would force c < a). We then have

(a2σ(a2)bc)|N.

Since c - σ(b) we also have

(aσ(a2)bσ(b)c)|(2N).

Suppose that c - σ(a2). In that case, we have

(aσ(a2)bσ(b)c2)|(2N),
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which yields

abc < 2N
1
2 .

We may thus assume that c|σ(a2). Now, suppose that a 6 |σ(c2). Then we have

(aσ(a2)σ(b)cσ(c2))|(2N).

This implies that

a3bc3 < 2N,

and again we have

abc < 2N
1
2 .

Note that with a little work we can actually tighten this last case slightly from

a3bc3 < 2N to get

abc < 2N
7
15

but we will not need that here.

We may now assume that a|σ(c2), and so a and c form a σ2,2 pair. Then, since

the special prime must be 1 (mod 4), we may invoke Lemma 7 to conclude that

b 6 |σ(c2) since otherwise c and b would form a σ2,2 pair. We then obtain

(aσ(a2)bcσ(c2))|N,

which again yields that

a3bc3 < 2N

and the logic is again identical.

We now have our last situation. (Note that the below proposition is the weakest

inequality, and so any improvement in the main theorem would come from improving

this proposition.)

Proposition 20. Suppose that a2||N , b2||N and c||N . Then we have

abc < (2N)
3
5 .

Proof. Assume that a2||N , b2||N and c||N . We have, from an m-type argument,

that

a3b2c < 2N,

which becomes

3α+ 2β + 3γ < logN + log 2. (20)

Note that if (ab, σ(c)) = 1, then we have

(a2b2cσ(c))|(2N),
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in which case we immediately have

a2b2c2 < 2N

and hence

abc < (2N)
1
2 < (2N)

3
5 .

We may thus assume that either a|σ(c) or b|σ(c).

Now, assume that (ac, σ(b2)) = 1. In that case we have

a2b4c < (a2b2σ(b2)c)|N.

We get then

2α+ 4β + c ≤ logN. (21)

We take as our sum 2
98+ 1

311 + 1
321 which yields

α+ β + γ <
5

9
logN +

2

9
log 3.

We immediately obtain

abc < 3
2
9N

5
9 < 2N

3
5 .

We may thus assume that we have a|σ(b2) or c|σ(b2)

Let us consider the case where ac|σ(b2). Then we have ac ≤ b2 + b+ 1 < 2b2.

We thus have

α+ γ − 2β < log 2. (22)

We may then take as our sum 3
513 +22 which again yields

α+ β + γ <
3

5
logN +

3

5
log 2.

We may thus assume that we do not have both a|σ(b2) and c|σ(b2). Let us first

consider the case where c|σ(b2) and a - σ(b2). From Lemma 4 we have b - σ(c).

Note that we also have b2 - σ(a2) and so we have that

a2b3c < (σ(a2)bσ(b2)σ(c))|(2N)

which we have seen is enough to obtain that

abc < 2
3
5N

3
5 .

Now, let us consider the case where a|σ(b2) and c - σ(b2). Assume for now that

a2|σ(b2). Then, by Lemma 6, we have b - σ(a2). Now, if c - σ(a2), then we have

(a2σ(a2)b2c)|N,
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which yields

abc < 2N
7
12 .

So we may assume that c|σ(a2). We then have that b2 - σ(c), since it would force

b < a. If b - σ(c), then we would have (a2b2cσ(c))|(2N) which yields

abc < (2N)
1
2 .

We may thus assume in this context that b||σ(c). By an m-type argument we then

have

a2
1

2
b3c ≤ N,

which again yields that abc < N
3
5 . We may thus assume that a||σ(b2). Then we

have

(ab2σ(b2)c)|(2N),

which again implies

a2b3c < 2N

and so we are done with this case.

Now, if c|σ(b2), then we also have that b - σ(c) by Lemma 4. We then have

ac < σ(b2) < 2b2

and also

b2cσ(c) < N.

This last pair of inequalities is again strong enough to get our desired bound.

3. Towards an Improvement of Bounds on a

One would like to get a bound on a of the form a < CN ε for some ε < 1
6 . This

seems difficult. In this section, we will show that one can do so as long as one is

not in the situation a2||N , b2||N , and c||N . As before, we will break the cases we

care about into a variety of different propositions.

Proposition 21. If p4|N for some prime p ∈ {a, b, c}, then we have a < N
1
7 .

Proof. Assume that p4|N for some prime p ∈ {a, b, c}. Then we must have a7 <

a4b2c|N , from which the result follows.

We may thus assume going forward that we have a, b, and c raised to at most

the second power.

Proposition 22. Assume that a2||N , b2||N , and c2||N . Then a < (2N)
1
7 .
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Proof. Under these assumptions, we have by an m-type argument that a3b2c2 < 2N .

Since a7 < a3b2c, the result follows.

Proposition 23. If a||N , b2||N , and c2||N , then a < (2N)
1
7 .

Proof. Assume that a||N , b2||N , and c2||N . Note that (bc, σ(a)) = 1, since a+1
2 <

b < c.

If b - σ(c2), then

a7 < (σ(a)b2c2σ(c2))|(2N).

Thus, we may assume that b|σ(c2).

If a - σ(c2), and b||σ(c2), then

a7 < aσ(a)bc2σ(c2).

So we may assume that either b2|σ(c2) or a|σ(c2). If ab2|σ(c2), then we have

a3 < ab2 < 2c2. (23)

If c 6 |σ(b2), then

a7 < (σ(a)σ(b2)b2c2)|(2N),

so we may assume that c|σ(b2). Since c|σ(b2) by Lemma 6, we must have b2 - σ(c2),

and so we have b||σ(c2), and thus may assume that a|σ(c2). Since a||N , and a|σ(c2),

we must then have a - σ(b2). (We could also reach this conclusion via Lemma 10.)

We then have

a7 < aσ(a)σ(b2)b2c < 2N

and so we are done.

Proposition 24. If a2||N , b||N and c2||N , then a < (2N)
1
7 .

Proof. Assume that a2||N , b||N and c2||N . If we have a2|σ(b), then since we have

b ≤ (2N)
1
5 , we have

a <

√
b+ 1

2
< b < (2N)

1
10 < (2N)

1
7 .

Thus, we may assume that a2 - σ(b).

Note that c2 6 |σ(a2), and c 6 |σ(b). We also have that σ(a2) < c2 and so c2 - σ(a2).

We claim that we also must have bc - σ(a2). To see this, note that

bc > (a+ 2)(a+ 4) = a2 + 6a+ 8 > a2 + a+ 1 = σ(a2).
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Note that if (bc, σ(a2)) = 1, then we have

a7 < a2σ(a2)bc2 < 2N.

We may thus assume that we have exactly one of b|σ(a2) and c|σ(a2).

First, let us consider the case when b|σ(a2) and c - σ(a2). We may apply Lemma

4 to conclude that a - σ(b). We then have

a7 < aσ(a2)bσ(b)c2 < 2N

which implies the desired bound.

Now, consider the possibility that c|σ(a2) and b - σ(a2). We already established

that a2 - σ(b), and so we have

a7 < (aσ(a2)b2cσ(b))|(2N)

which again gives us our desired bound.

Putting all the above propositions from this section together, we have the fol-

lowing dichotomy.

Theorem 25. Either a < (2N)
1
7 or we have a2||N , b2||N and c||N .

One obvious question is what we can say about this last situation. In that regard

we have the following result.

Proposition 26. If a2||N , b2||N and c||N , then either a < (2N)
1
7 , or all the

following must hold: We have c|σ(a2), b|σ(c), and a2|σ(b2). There exists a prime d

and a positive integer j such that

1. d 6∈ {a, b, c}

2. dj ||N

3. b|σ(dj)

4. d|σ(a2)

5. dj - σ(a2b2c)

6. dj < 1
2a

2.

Proof. We will assume that we have a2||N , b2||N and c||N , and that the first case

above does not hold. Note that we may assume that (bc, σ(a2)) > 1 since if bc and

σ(a2) are relatively prime, we would have

a7 < (a2b2cσ(a2))|(2N).
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As before, we cannot have bc|σ(a2) so we have exactly one of b|σ(a2) or c|σ(a2).

Let us first consider the case where b|σ(a2) and c - σ(a2). Note that if a - σ(b2)

then

a7 < (a2bσ(b2)cσ(a2))|(2N).

Therefore, we may assume that a|σ(b2). Since a and b form a σ2,2 pair, we have by

Lemma 6 that a2 - σ(b2).

Now, if we have (ab, σ(c)) = 1, then we have

a7 < aσ(b2)σ(a2)bσ(c)|2N

so we may assume that either a|σ(c) or b|σ(c). Let us first consider the case where

b|σ(c). We must have, by Lemma 4, that c - σ(b2), and hence

a7 < (abcσ(b2)σ(a2))|N.

We may assume that b - σ(c), and hence that a|σ(c). By Lemma 7, and again using

that the special prime must be 1 (mod 4), we must have that c - σ(b2). So again

we obtain

a7 < abσ(a2)σ(b2)c|N.

We now consider the case where c|σ(a2), and b - σ(a2). By Lemma 4, we have

a - σ(c). Now, if b - σ(c), we then have that

a7 < (a2σ(a2)b2σ(c))|(2N),

so we may assume that b|σ(c). Now, note that if a2 - σ(b2), then we have

a7 < aσ(a2)σ(b2)b2 < N,

and so we have a2|σ(b2).

We have already established that b|σ(c). We now wish to show that b||σ(c).

Assume that b2|σ(c); then we have

σ(a2b2c) = σ(a2)σ(b2)σ(c) ≥ ca22b2 = 2a2b2c.

But that would mean that a2b2c is either perfect or abundant and is a proper divisor

of N , which is a contradiction. Hence the assumption that b2|σ(c) must be false.

By an m-type argument, there is a prime d and and a positive integer j such

that dj ||N , d 6∈ {a, b, c}, and b|σ(dj).

Since b|σ(dj) we have that dj > 1
2b. Now, if d - σ(a2), then we have

1

2
a7 < a4b2

1

2
b < (a2σ(a2)b2dj)|N.

So we may assume that d|σ(a2). Now, assume that dj |σ(a2b2c). In that case

we have (a2b2cdj)|σ(a2b2cdj) so a2b2cdj is perfect or abundant, which is impossible
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since a2b2cdj is a proper divisor of N . (Note that here we are using that an odd

perfect number must have at least five distinct prime factors.)

We now just need to prove Item 6. So assume that dj ≥ 1
2a

2. Then we have

a5 < a2b2c <
N

dj
<

2N

a2
,

and we can then solve the resulting inequality for a.

Note that we can improve Item 6’s bound by using the fact that an odd perfect

number must be divisible by more primes, and so we can replace the 1
2 in Item 6

with a much smaller constant.

4. Towards an Improvement of Bounds on bc

The situation for trying to improve the bound on bc is very similar to that with a.

Namely, we can get tighter bounds in all cases except for certain specific contexts

when b2||N and c||N .

Proposition 27. If N is an odd perfect number, with b2||N , and c2||N , then

bc ≤ 2(31/3)N
5
12 .

Proof. Assume b2||N , and c2||N . If we have that c - σ(b2) and b - σ(c2) then we

have that

b4c4 < b2σ(b2)σ(c2)|2N,

and so bc < 2N
1
4 . We thus may assume that either b|σ(c2) or that c|σ(b2). Note

that c2 - σ(b2). To see why, note that b2 + b + 1 is not a perfect square; so if

c2|(b2 + b+ 1) we must have 3c2 ≤ b2 + b+ 1. But that would force c < b.

Now, assume that c 6 |σ(b2). Then we have

b4c2 < (b2σ(b2)c2)|(2N),

and so b4c2 < 2N . Now set c = Nα. Then

b ≤
(

2N

N2α

) 1
4

< 2N
1
4−

α
2 .

Then

bc < 2N
1
4−

α
2 Nα = 2N

1
4+

α
2 .

We can make this quantity as large as possible by making α as large as possible,

which would occur when we have c = 31/3N1/3. Thus,

bc ≤ 2(31/6)N
5
12 .
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We may thus assume that c||σ(b2). Then by Lemma 6 we have that b2 - σ(c2).

We then have that

b3c3 < (bσ(b2)cσ(c2))|(2N)

and so bc ≤ (2N)1/3.

Proposition 28. If b||N and c2||N then bc ≤ (2N)2/5.

Proof. Assume as given. Note that c - σ(b) since if it did, we would have c ≤ b+1
2 <

b. Thus, there exists m such that m|N , (m,N/m) = 1, (m, bc) = 1, and c2|σ(m).

Note that since N is perfect, m is deficient, and so we must have m > c2

2 . We then

have
1

2
c2bc2 ≤ mbc2|N

and so

b
5
2 c

5
2 ≤ 2N,

from which the result follows.

Proposition 29. If either b4|N or c4|N , then we have that

bc ≤ 4N
4
9 .

Proof. First note that if (b4c4)|N then bc < N
1
4 so we only need to handle two cases,

b4|N and c4|N . We may assume that not both are true. We will first consider the

case when c4|N . We have two subcases: b||N and b2||N . If b||N , then we have that

c - σ(b) and thus

b3c3 < (bσ(b)c4)|(2N).

This yields that bc < (2N)
1
3 . If b2||N , then we have that

b3c3 < (b2c4)|N

and the same inequality results.

We then have two remaining cases. In the first case, Case I, b4|N , c||N . In the

second case, Case II, we have b4|N and c2||N .

We will handle Case I first. We have either b4||N or we have b6|N (we cannot

have b5||N since c is the special prime in this case). If b6|N , then we may set c = Nα

for some α. Thus we have

b6 ≤ N1−α

and hence

b ≤ N 1
6−

α
6 .

We then have

bc ≤ N 1
6−

α
6 Nα = N

1
6−

5α
6 .
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This last quantity on the right is maximized when α is as large as possible, namely

when Nα = (3N)1/3. This yields with a little work bc ≤ 2N
4
9 . Now, consider the

scenario of b4||N and c||N . If b - c+ 1, then we have that

b4c2 < (b4cσ(c+ 1))|(2N).

And one gets from the above inequality that

bc ≤ 2N
5
12 < 2N

4
9 .

We may thus assume that b|c+ 1. We may handle the case when c 6 |σ(b4) similarly.

We thus have that b|σ(c) and c|σ(b4).

We then have by Lemma 11 that b2 - σ(c). We then have that

b3c2 ≤ (b3cσ(c))|2N.

Then by similar logic, by setting c = Nα and using this to maximize bc we obtain

that bc < 4N
4
9 .

We now consider Case II, where b4|N and c2||N . This case is enough to get from

b4c2 < N the desired inequality through the same method as before.

We now come to the pesky case that is the primary barrier to improvement,

namely b2||N and c||N .

Let us discuss what results we do have in this case. Using the same techniques

as before we easily get the following result.

Proposition 30. If c - σ(b2) and b 6 |σ(c), then we have that

bc < 4N
5
12 .

Summarizing the above we have the following theorem.

Theorem 31. We have either

bc < 4N
4
9

or we must have:

1. Both b2||N and c||N

2. Either c|σ(b2) or b|σ(c).

We now consider the situations where we have either b|σ(c) or c|σ(b2). Note that

we cannot have both by Lemma 4. In this context we can prove that we are in a

highly restricted situation.

Proposition 32. Assume that b2||N and that c||N . If b - σ(c), and c|σ(b2), then

there exists an m such that



INTEGERS: 21 (2021) 26

1. m|N ,

2. m has at most two distinct prime factors,

3. (N/m) = 1,

4. (bc,m) = 1,

5. b2|σ(m),

6. m - σ(c)σ(b2).

Proof. Let m0 be the minimum m0 such that m0|N , (N/m0) = 1, (bc,m0) = 1,

and b2|σ(m0). Note that m0 must have at most two distinct prime factors since

there can be at most two components of N which contribute a b to σ(N). So what

remains is to prove Item 6. Assume that m0|σ(c)σ(b2). Then

σ(m0b
2c) = σ(m)σ(b2)σ(c) ≥ 2mb2c.

Thus, mb2c is either abundant or perfect. But mb2c has at most four distinct prime

factors, so we cannot have mb2c = N . Thus N has a perfect or abundant divisor

and must itself then be abundant and hence not perfect.

Proposition 33. Let N be an odd perfect number with b2||N and c||N , b - σ(c),

and let m be as in the above proposition. Then either bc < 4N
5
12 or (m,σ(c)) > 1.

Proof. Assume that (m,σ(c)) = 1. Then we have that

1

2
b4c2 < mb2cσ(c)||2N.

One thus has

b4c2 < 4N,

from which the bound follows.

We would like to get the same but with (m,σ(b2)) = 1. If we assume that

(m,σ(b2)) = 1 then we have that

1

2
b2b2σ(b2) < mb2σ(b2)|N

and this only gives b < N1/6 which is not strong enough to improve these results

further without some sort of tighter bound on c.
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5. Further Results on σa,b Pairs

This section contains additional results concerning σa,b pairs. These results are not

directly relevant to odd perfect numbers but are independently interesting.

Lemma 34. Suppose p and q are positive integers with p|q + 1, and q|p+ 1. Then

one must have (p, q) ∈ {(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)}

Proof. Assume that q|p + 1 and p|q + 1. We have kq = p + 1 for some k, and so

p = kq − 1. We then have that kq − 1|q + 1, and hence kq − 1 ≤ q + 1. Solving for

k, we obtain that

k ≤ 1 +
2

q
.

The last inequality implies k ≤ 3. We will consider three cases k = 1, k = 2 or

k = 3.

If k = 1, then we have

q − 1|q + 1,

and hence

q − 1|2q.

Since (q − 1, q) = 1, this forces q − 1|2, and therefore either q = 2 or q = 3.

These correspond to p = 1 or to p = 2, leading to the pairs (p, q) = (1, 2), and

(p, q) = (2, 3).

If k = 2, then

2q − 1|q + 1.

This implies that there is some m such that

m(2q − 1) = q + 1.

Notice that if m ≥ 3 this leads to a contradiction, so we must have m = 1 or m = 2.

If m = 1, we have 2q − 1 = q + 1, and so q = 2, and thus p = 3 Thus, the only

solution for m = 1 is (p, q) = (3, 2).

If m = 2, then we have 2(2q − 1) = q + 1 which yields q = 1 and p = 1 and thus

the solution (p, q) = (1, 1).

Finally, we have the possibility that k = 3, which yields 3q − 1|q + 1. We then

have

m(3q − 1) = q + 1

for some m. If m ≥ 2 we get a contradiction. Thus we may assume that m = 1.

This gives us 3q − 1 = q + 1 which yields q = 1, and p = 2, which gives our final

point (p, q) = (2, 1).

From Lemma 34 we may classify all σ1,1 pairs.
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Proposition 35. The only σ1,1 pairs are (2, 3) and (3, 2).

We will now use this result to better understand σ2,3 and σ3,3 pairs.

Lemma 36. Assume that (p, q) is a σ3,3 pair. Then we must be in one of four

circumstances:

1. (p, q) is a σ1,1 pair;

2. p|(q2 + 1) and q|(p2 + 1);

3. p|(q + 1) and q|(p2 + 1);

4. p|(q2 + 1) and p|(q + 1).

Proof. Assume that (p, q) is a σ3,3 pair. We must then have p|q3 + q2 + q + 1 and

q|p3 + p2 + p+ 1. Note that we have the factorization

x3 + x2 + x+ 1 = (x+ 1)(x2 + 1).

Since p and q are primes, and we have p|(q + 1)(q2 + 1), and q|(p + 1)(p2 + 1) the

result follows.

Note that Cases 3 and 4 of Lemma 36 are symmetric, so to understand the

remaining σ3,3 pairs we need only concentrate on Cases 2 and 3. We will classify

explicitly all solutions for Case 3, and will obtain a restriction on Case 2 very similar

to what we did with σ2,2 pairs.

Define the sequence sn as follows: s0 = s1 = 1, and for all n ≥ 0 we set

sn+2 =
s2n+1 + 1

sn
.

Lemma 37. Suppose that x and y are positive integers such that x|y2 + 1 and

y|x2 + 1. Then (x, y) is a pair of consecutive terms in the sequence sn.

Proof. It is immediate that the sequence of sn consists of integers which are solutions

to the equation in question. We need to show that every solution arises from this

sequence.

Our proof is very similar to what we did to classify quasichain solutions for σ2,2
pairs. Note that any pair x, y satisfying x|y2 + 1 and y|x2 + 1 must either have

y 6= x, or must be the pair (x, y) = (1, 1). Set z = (x2 + 1)/y. We claim that z

and x satisfy the pair of relationships z|x2 + 1 and x|z2 + 1. The definition of z

immediately implies z|x2 + 1. The second relationship requires some slight work.

We have

z2 + 1 =

(
x2 + 1

y

)2

+ 1 =
x2 + 4x+ (y2 + 1)

y2
.
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Note that x|(x2 + 2x) and x|(y2 + 1) so we have that x|x2 + 2x + (y2 + 1). Since

(x, y) = 1, we then havethat

x|
(
x2 + 2x+ (y2 + 1)

y2

)
which is the claimed relationship. Thus, if x 6= y, we can construct a smaller pair,

z, and y which satisfy the same relationship. Thus, all solutions must arise from

the initial pair (1,1).

Note that an easy induction argument shows that for n > 1, sn = F2n−1 where

Fn is the nth Fibonacci number. We strongly suspect that there are only finitely

many n such that both F2n−1 and F2n+1 are prime. Note that since Fp can only be

prime when p is prime, the existence of infinitely many pairs of primes F2n−1 and

F2n+1 would correspond to a much stronger version of the twin prime conjecture.

However, a heuristic argument similar to the argument that we expect only finitely

many σ2,2 pairs suggests we only have finitely many of these pairs also.

Define the sequence un as follows: We set u0 = u1 = 1 and apply the following

two rules:

u2k+2 =
u22k+1 + 1

u2k

and

u2k+3 =
u2k+2 + 1

u2k+1
.

Notice that this sequence is periodic and takes the form

1, 1, 2, 3, 5, 2, 1, 1, 2, 3, 5 · · ·

Lemma 38. If a and b are positive integers satisfying b|a2 + 1 and a|b + 1 then

they must arise from a pair of terms from the un sequence.

Proof. The method of proof is similar to our earlier reductions. Assume that we

have a pair (a, b) satisfying b|(a2 +1) and a|(b+1) which is not a pair of consecutive

terms of un. We may pick a pair which has smallest possible value of a + b. We

may assume that this pair satisfies a > 5, b > 5 and a 6= b. If a > b, then the

pair b+1
a , b) also satisfies the desired divisibility relations but has a smaller sum,

that is b+1
a + b < a + b, which is a contradiction. Similarly, if b < a, then the pair

(a, a
2+1
b ) satisfies the divisibility relations while a + a2+1

b < a + b which again is a

contradiction.

Acknowledgements. Rajdip Palit pointed out that an earlier version of Lemma

10 was incorrect. Many helpful suggestions were made by the referee and the editor.
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