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Abstract

Recently, Nyirenda and Mugwangwavari considered several restricted partition func-
tions which they viewed from the perspective of partitions with initial repetitions.
Utilizing a number of results from Slater, along with classical generating function
manipulations, they proved several Ramanujan–like congruences modulo 2 satis-
fied by these functions. Our goal in this note is to establish infinite families of
Ramanujan-type congruences for these functions that have the aforementioned con-
gruences as special cases.

1. Introduction

A partition of a positive integer n is a sum of the form n = λ1 + λ2 + · · ·+ λr such

that λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 1. Each summand λi is called a part of the partition.

The number of times that a particular summand occurs in the partition is known

as the multiplicity of that part. We say that a part is repeated if its multiplicity is

greater than one.

In 2009, Andrews [3] introduced the idea of partitions with initial repetitions.

His main definition is as follows: A partition with initial k-repetitions is a partition

in which if any j appears at least k times as a part, then each positive integer

less than j appears at least k times as a part. We highlight two examples of what

Andrews proved in his paper, the first of which relates to Glaisher’s generalization
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of Euler’s famous result on odd-part partitions and distinct-part partitions:

Theorem 1. The number of partitions of n with initial k-repetitions equals the

number of partitions of n into parts not divisible by 2k and also equals the number

of partitions of n in which no part is repeated more than 2k − 1 times.

Keith [4] soon followed with a bijective proof of Theorem 1. Andrews [3] also proved

the following result which focuses on the parity of the parts in question.

Theorem 2. Let Fe(n) denote the number of partitions of n in which no odd parts

are repeated, and if an even part 2j is repeated, then each even positive integer

smaller than 2j appears in the partition as a repeated part. Finally, no odd integers

smaller than 2j appear as a part. Then, for all n, Fe(n) equals the number of

partitions of n into parts ≡ 0,±2 (mod 7).

Additional work of this type was also completed by Munagi and Nyirenda [5].

Motivated by Andrews’ original work on partitions with initial repetitions, Nyi-

renda and Mugwangwavari [6] recently defined several functions which they viewed

within the realm of partitions with initial repetitions. Relying heavily on the work

of Slater [8] and utilizing classical techniques for manipulating generating functions,

Nyirenda and Mugwangwavari proved several parity results for these partition func-

tions and identified some examples of Ramanujan-like congruences that follow from

them. In this paper, we build on their work by performing the elementary analy-

sis necessary to establish infinite families of Ramanujan–like congruences modulo 2

satisfied by three of their functions. In the process, we will work to “quantify” the

number of such congruences that exist.

2. Three Crucial Lemmas

As we mentioned above, part of our work in this note involves quantifying the

number of Ramanujan–like congruences modulo 2 that will hold for each function

in question. The following lemmas will play a key role in proving such results below.

Lemma 1. Suppose p is an odd prime and m and n are integers such that p ∤
mn(n−m). Then the number of r with 0 ≤ r ≤ p− 1 such that mr+ 1 and nr+ 1

are both quadratic nonresidues modulo p is⌊p
4

⌋
− 1

4

[(
m

p

)
−
(
n−m

p

)][(
n

p

)
−

(
m− n

p

)]
,

where

(
x

p

)
is the Legendre symbol of x modulo p.
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Proof. For convenience, let ϕ(x) represent the Legendre symbol

(
x

p

)
. Note that

ϕ(0) = 0, ϕ(xy) = ϕ(x)ϕ(y), and for x ̸≡ 0 (mod p) we have ϕ(x2) = 1 and ϕ(x−1) =

ϕ(x). Let M be the number of r with 0 ≤ r ≤ p− 1 for which mr+1 is a quadratic

residue and nr+1 is a nonresidue and let N be the number of r where both mr+1

and nr+1 are nonresidues. Note that M+N will be p−1
2 unless mr+1 ≡ 0 (mod p)

for some r with nr+1 a nonresidue, in which case M +N = p−1
2 − 1. Equivalently,

M +N =
p− 1

2
− 1

2
(1− ϕ(−nm−1 + 1)) =

1

2
(p− 2 + ϕ(m)ϕ(m− n)).

Note also that

M −N =
∑

ni+1 is a nonresidue

ϕ(mi+ 1).

Fix a nonresidue a. Then ni+1 is a nonresidue if and only if ni+1 ≡ ax2 (mod p)

for some x with 1 ≤ x ≤ p−1
2 . Moreover, mi + 1 = 1

n [m(ni + 1) + (n − m)]. It

follows that

M −N =

(p−1)/2∑
x=1

ϕ

(
1

n
(max2 + n−m)

)

=
1

2
ϕ(n)

p−1∑
x=1

ϕ(max2 + n−m)

= −1

2
ϕ(n)ϕ(n−m) +

1

2
ϕ(n)

p−1∑
x=0

ϕ(max2 + n−m).

Now
∑p−1

x=0 ϕ(ux
2 + v) =

∑p−1
x=0 ϕ(ux + v)(1 + ϕ(x)), and

∑p−1
x=0 ϕ(ux + v) = 0 for

u ̸≡ 0 (mod p). Using these and changing variables, we find

M −N = −1

2
ϕ(n)ϕ(n−m) +

1

2
ϕ(n)

p−1∑
x=0

ϕ(max+ n−m)ϕ(x)

= −1

2
ϕ(n)ϕ(n−m) +

1

2
ϕ(n)

p−1∑
x=0

ϕ(max+ 1)ϕ(x)

= −1

2
ϕ(n)ϕ(n−m) +

1

2
ϕ(n)ϕ(ma)

p−1∑
x=0

ϕ(x+ 1)ϕ(x).

Since a is a quadratic nonresidue modulo p, ϕ(a) = −1. Also,

p−1∑
x=0

ϕ(x+ 1)ϕ(x) =

p−1∑
x=1

ϕ(x+ 1)ϕ(x−1) =

p−1∑
x=1

ϕ(1 + x−1) =

p−1∑
x=1

ϕ(1 + x),



INTEGERS: 25 (2025) 4

and
∑p−1

x=1 ϕ(1 + x) =
∑p−1

x=0 ϕ(1 + x)− 1 = −1. Then

M −N = −1

2
ϕ(n)ϕ(n−m) +

1

2
ϕ(n)ϕ(m),

and subtracting this from our expression for M +N gives

2N =
1

2
(p− 2 + ϕ(m)ϕ(m− n)) +

1

2
ϕ(n)ϕ(n−m)− 1

2
ϕ(n)ϕ(m).

Finally, using the facts that
⌊
p
4

⌋
= p−2+ϕ(−1)

4 and

− ϕ(−1) + ϕ(m)ϕ(m− n) + ϕ(n)ϕ(n−m)− ϕ(n)ϕ(m)

= −
[(

m

p

)
−
(
n−m

p

)][(
n

p

)
−

(
m− n

p

)]
,

the result follows.

In Corollary 1 and Corollary 3 below we provide congruences modulo 2 for arith-

metic progressions of the form 2kn + r. The proofs of these corollaries require

knowledge about squares modulo powers of 2. We provide the needed information

in the following lemmas.

Lemma 2. For each k ≥ 1, there are exactly two values which are squares modulo

22k−1 but not squares modulo 22k, namely 22k−1 and 22k−1 + 22k−2.

Proof. We prove our assertion by induction on k. For k = 1, we note that 2 = 21

and 3 = 21 +20 are both squares modulo 2 but not squares modulo 4 = 22. Hence,

the base case holds. Now let k > 1 and assume the result holds for k − 1. Let r

be a square modulo 22k−1 but not a square modulo 22k. Then r ≡ s2 (mod 22k−1)

and r ≡ s2 + 22k−1 (mod 22k) for some integer s. If s is odd, then

(s+ 22k−2)2 = s2 + 22k−1s+ 24k−4 ≡ s2 + 22k−1 ≡ r (mod 22k),

violating the condition that r not be a square modulo 22k. Thus, s is even, say

s = 2t for some integer t. If s2 + 22k−1 = 4(t2 + 22k−3) is not a square modulo

22k, then t2 + 22k−3 is not a square modulo 22k−2. It follows from the inductive

hypothesis that t2 ≡ 0 (mod 22k−2) or t2 ≡ 22k−4 (mod 22k−2). Thus, s2 ≡ 0

(mod 22k) or s2 ≡ 22k−2 (mod 22k), completing the induction.

Lemma 3. For each k ≥ 1, the number 22k + 22k−2 is the unique value which is a

square modulo 22k but not a square modulo 22k+1.

The proof of Lemma 3 is nearly identical to the proof of Lemma 2 and is omitted

here.
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Remark 1. For any n ≥ 1, the number of squares modulo 2n is given in [7,

A023105]. From this, we can deduce that the number of non–squares modulo 2n

satisfies the recurrence

an = 2an−1 +

{
1, if n is odd;

2, if n is even.

3. Main Results

The first function from [6] that we consider is defined as follows:

Let c2(n) be the number of partitions of n in which there exists j ≥ 1 such that j

appears exactly j times and it is the only part less than 2j+1, even parts ≥ 2j+2

are distinct, odd parts ≥ 2j + 1 appear unrestricted.

Theorem 3 ([6], Theorem 2). For all n ≥ 0, c2(5n+ 2) ≡ 0 (mod 2).

We now prove our main result on c2(n), which includes Theorem 3 as a special case.

Theorem 4. Let p ≥ 5 be prime. Then for any 1 ≤ r ≤ p − 1 such that neither

16r + 1 nor 8r + 1 is a quadratic residue modulo p we have

c2(pn+ r) ≡ 0 (mod 2)

for all n ≥ 0.

Proof. We note that Nyirenda and Mugwangwavari prove that

∞∑
n=0

c2(n)q
n ≡

∞∑
a=−∞

q4a
2+a +

∞∑
b=0

qb(b+1)/2 (mod 2).

Thus, if n cannot be represented as 4a2 + a and n also cannot be represented as

b(b+1)/2, then we immediately know that c2(n) ≡ 0 (mod 2). Via completing the

square, this means we want to know whether 16n+ 1 is representable as (8a+ 1)2

and whether 8n+1 is representable as (2b+1)2. It follows that c2(n) ≡ 0 (mod 2)

if neither 16n+ 1 nor 8n+ 1 is a quadratic residue modulo p.

We next determine the number of Ramanujan–like congruences that Theorem 4

provides modulo a prime p ≥ 5.

Theorem 5. Let p ≥ 5 be prime and define f2(p) to be the number of values of r,

1 ≤ r ≤ p − 1, such that neither 16r + 1 nor 8r + 1 is a quadratic residue modulo

p. Then f2(p) = ⌊p
4⌋.

https://oeis.org/A023105
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Proof. Thanks to Lemma 1 with m = 8, n = 16, we have

f2(p) =
⌊p
4

⌋
− 1

4

[(
8

p

)
−
(
8

p

)][(
16

p

)
−
(
−8

p

)]
=

⌊p
4

⌋
.

Next, let c3(n) be the number of partitions of n in which there is a positive

integer j such that 1 appears with multiplicity j2 or j2 +1, odd parts larger than 1

are distinct, all even parts are distinct and those greater than 2j are at least 4j+4

in size and divisible by 4.

Theorem 6 ([6], Theorem 4). For all n ≥ 0,

c3(11n+ 5) ≡ 0 (mod 2),

c3(11n+ 7) ≡ 0 (mod 2), and

c3(11n+ 9) ≡ 0 (mod 2).

We now prove our main result on c3(n), which includes Theorem 6 as a special case.

Theorem 7. Let p ≥ 5 be prime. Then for any 1 ≤ r ≤ p − 1 such that neither

12r + 1 nor 8r + 1 is a quadratic residue modulo p we have

c3(pn+ r) ≡ 0 (mod 2)

for all n ≥ 0.

Proof. In [6] the authors prove that

∞∑
n=0

c3(n)q
n ≡

∞∑
a=−∞

qa(3a+1) +

∞∑
b=0

qb(b+1)/2 (mod 2).

Thus, if n cannot be represented as a(3a + 1) and n also cannot be represented

as b(b + 1)/2, then c3(n) ≡ 0 (mod 2). Via completing the square, this means we

want to know whether 12n+ 1 is representable as (6a+ 1)2 and whether 8n+ 1 is

representable as (2b+ 1)2. It follows that c3(n) ≡ 0 (mod 2) if neither 12r + 1 nor

8r + 1 is a quadratic residue modulo p.

Theorem 8. Let p ≥ 5 be prime and define f3(p) to be the number of values of r,

1 ≤ r ≤ p − 1, such that neither 12r + 1 nor 8r + 1 is a quadratic residue modulo

p. Then

f3(p) =


⌊p
4⌋ − 1 if p ≡ 5 (mod 24)

⌊p
4⌋+ 1 if p ≡ 11 (mod 24)

⌊p
4⌋ otherwise

.
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Proof. Thanks to Lemma 1 with m = 8, n = 12, we have

f3(p) =
⌊p
4

⌋
− 1

4

[(
8

p

)
−

(
4

p

)][(
12

p

)
−

(
−4

p

)]
=

⌊p
4

⌋
− 1

4

[(
2

p

)
− 1

] [(
3

p

)
−

(
−1

p

)]
.

Checking cases modulo 24, this count agrees with the count in Theorem 8.

Remark 2. Note that, in the case of Theorem 4 in [6], Nyirenda and Mugwang-

wavari provided ⌊ 11−1
4 ⌋+ 1 = 2 + 1 = 3 such congruences, and one can verify that

the case p = 11 of Theorem 7 yields precisely their three congruences. We also

highlight that f3(5) = 0.

Finally, let c8(n) be the number of partitions of n in which either

(a) all parts are even and distinct, or

(b) the largest odd part 2j−1 appears once, all positive odd integers ≤ j appear

once or twice, all positive odd integers > j appear once, all even parts are distinct,

and those even parts > j must be ≥ 2j + 2 in size.

Theorem 9 ([6], Theorem 9). For all n ≥ 0, if r ∈ {6, 20, 27, 34, 41, 48}, then

c8(49n+ r) ≡ 0 (mod 2).

Nyirenda and Mugwangwavari prove Theorem 9 after showing that

∞∑
n=0

c8(n)q
n ≡

∞∑
n=−∞

qn(3n+1)/2
∞∑

n=−∞
qn(5n+1)/2 (mod 2).

We now show that the generating function for c8(n) is also congruent modulo 2 to a

single theta series, which will allow us to identify many more arithmetic progressions

An+B on which c8 will always be even.

We begin by recalling the q–Pochhammer notation: For n ≥ 1 and |q| < 1, we

define

(A; q)0 := 1,

(A; q)n := (1−A)(1−Aq)(1−Aq2) . . . (1−Aqn−1), and

(A; q)∞ := lim
n→∞

(A; q)n.

We now state a theorem of Andrews [2] which is key to our analysis of c8(n) modulo

2.

Theorem 10 ([2], (6.22)). We have

(q2; q2)∞

∞∑
j=0

qj
2

(q; q)j
=
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∞∑
λ=−∞

(
q60λ

2+4λ − q60λ
2+44λ+8 + q60λ

2+16λ+1 − q60λ
2+64λ+17

)
. (1)

Some remarks are in order before we move forward. First, note that the sum

on the left–hand side of the equation above appears in the celebrated first Rogers–

Ramanujan identity [1, p. 104]. Second, note that the right–hand side of the

equation above provides a lacunary 2–dissection of the expression in question.

This now leads us to the following theorem with which we can extend the original

parity results of Nyirenda and Mugwangwavari for c8(n).

Theorem 11. Let N be an integer such that 15N + 1 is not a square. Then

c8(N) ≡ 0 (mod 2).

Proof. From the work of Nyirenda and Mugwangwavari, we know

∞∑
n=0

c8(n)q
n ≡ (q2; q2)∞

∞∑
n=0

qn
2

(q; q)n
(mod 2).

Moreover, it is straightforward to prove that the exponents of q in the sum on the

right–hand side of (1) in Theorem 10 are exactly the integers of the form (n2−1)/15.

(See [7, A204221] and [7, A204542] for more information.) We then see that

∞∑
n=0

c8(n)q
n ≡

∞∑′

n=0

q(n
2−1)/15 (mod 2)

where the sum on the right–hand side above is taken only over those integers n

wherein (n2 − 1)/15 is an integer. Thus,

∞∑
n=0

c8(n)q
15n+1 ≡

∞∑
n=0

qn
2

(mod 2).

The result follows.

Remark 3. For each prime p > 5 there are p− 1 values of r such that 0 ≤ r < p2

and 15r+1 is divisible by p but not by p2. By Theorem 11, for every n ≥ 0 and each

such r, c8(p
2n + r) ≡ 0 (mod 2). When p = 7, the corresponding values of r are

exactly those given in Theorem 9. Thus, Theorem 11 is a significant generalization

of Theorem 9.

Corollary 1. For all k ≥ 1 and all n ≥ 0,

c8(2
2kn+ rk,1) ≡ 0 (mod 2),

https://oeis.org/A204221
https://oeis.org/A204542
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c8(2
2kn+ rk,2) ≡ 0 (mod 2), and

c8(2
2k+1n+ rk,3) ≡ 0 (mod 2)

where rk,1, rk,2, and rk,3 are the least nonnegative integers which satisfy

15−1
2k (2

2k−1 − 1) ≡ rk,1 (mod 22k),

15−1
2k (2

2k−1 + 22k−2 − 1) ≡ rk,2 (mod 22k), and

15−1
2k+1(2

2k + 22k−2 − 1) ≡ rk,3 (mod 22k+1),

respectively, and 15−1
A is the inverse of 15 modulo 2A.

Proof. If N = 22kn + rk,1 then 15N + 1 ≡ 15 · 22kn + 22k−1 ≡ 22k−1 (mod 22k).

By Lemma 2, 15N + 1 is not a square modulo 22k, proving the first congruence.

The other congruences follow by similar arguments, the last making use of Lemma

3.

Before moving to our next corollary, we pause to share an example to put Corol-

lary 1 in context. When k = 2, Corollary 1 tells us that, for all n ≥ 0,

c8(16n+ 9) ≡ 0 (mod 2),

c8(16n+ 5) ≡ 0 (mod 2), and

c8(32n+ 29) ≡ 0 (mod 2).

Corollary 2. Let p ≥ 7 be prime. Then for any 1 ≤ r ≤ p− 1 such that 15r+ 1 is

not a quadratic residue modulo p, we have c8(pn+ r) ≡ 0 (mod 2) for all n ≥ 0.

4. Closing Thoughts

As we close this work, we note that Andrews [2, (6.23)] provides a companion result

to Theorem 10.

Theorem 12 ([2], (6.23)). We have

(q2; q2)∞

∞∑
j=0

qj
2+j

(q; q)j
=

∞∑
λ=−∞

(
q60λ

2+8λ − q60λ
2+32λ+4 + q60λ

2+28λ+3 − q60λ
2+52λ+11

)
.

Note that the sum in the left–hand side above is the series that appears in the

analytic statement of the second Rogers–Ramanujan identity. Moreover, in a fashion

similar to that above, it is straightforward to prove that the values which appear in
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the exponents on the right–hand side of the equation above are exactly the integers

for which the quantity (n2 − 4)/15 are integers.

Motivated by our work above related to c8(n), as well as the existence of Andrews’

Theorem 12, we now define the following function c′8(n) which is a somewhat natural

companion to c8(n).

Let c′8(n) be the number of partitions of n in which either

(a) all parts are even and distinct, with no distinguished part present, or

(b) there is a distinguished even part 2n with the property that 2n and all smaller

even parts must appear in the partition, every even part up to n might appear a

second time (and no more), all odd parts of size ≤ n must be distinct (if they appear

at all), and every part greater than n must be even and distinct.

It is important to note that the “distinguished part” in the definition of c8(n) is

simply the largest odd part in the partition (if it exists). So there really is no need

to add any distinguishing mark in order to avoid ambiguity. In contrast, we must

provide for the possibility of distinguishing a particular even part in the context of

c′8(n) in order to avoid confusion as to which even part is playing the role of the

special part in question. Consider the partition π = 10 + 8 + 6 + 4 + 2. We could

avoid distinguishing a particular part, which would mean that we simply have a

partition into distinct even parts, as in part (a) of the definition above. Or, for

example, we could have π∗ = 10+8+6∗ +4+2, where we are considering the case

n = 3 in part (b) of the definition above. These “modified” partitions are counted

separately by c′8(n).

In parallel to the generating function that was supplied by Nyirenda and Mug-

wangwavari [6] for c8(n), we then see that the generating function for c′8(n) can be

written as

∞∑
n=0

c′8(n)q
n = (−q2; q2)∞+

∑
n≥1

q2+4+···+2n(1+ q)(1+ q2) · · · (1+ qn)(−q2n+2; q2)∞.

Therefore,

∞∑
n=0

c′8(n)q
n =

∑
n≥0

qn(n+1)(−q; q)n(−q2n+2; q2)∞

≡
∑
n≥0

qn
2+n (q

2; q2)n
(q; q)n

(q2n+2; q2)∞ (mod 2)

= (q2; q2)∞
∑
n≥0

qn
2+n

(q; q)n

=

∞∑
λ=−∞

(
q60λ

2+8λ − q60λ
2+32λ+4 + q60λ

2+28λ+3 − q60λ
2+52λ+11

)
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thanks to Theorem 12. With Theorem 11 in mind, as well as the remarks shared

after the statement of Theorem 12, we can now write the following parity result.

Theorem 13. Let N be an integer such that 15N + 4 is not a square. Then

c′8(N) ≡ 0 (mod 2).

It is clear that the following corollaries hold (in parallel to Corollaries 1 and 2).

Corollary 3. For all k ≥ 1 and all n ≥ 0,

c′8(2
2kn+ r′k,1) ≡ 0 (mod 2),

c′8(2
2kn+ r′k,2) ≡ 0 (mod 2), and

c′8(2
2k+1n+ r′k,3) ≡ 0 (mod 2)

where r′k,1, r
′
k,2, and r′k,3 are the least nonnegative integers which satisfy

15−1
2k (2

2k−1 − 4) ≡ r′k,1 (mod 22k),

15−1
2k (2

2k−1 + 22k−2 − 4) ≡ r′k,2 (mod 22k), and

15−1
2k+1(2

2k + 22k−2 − 4) ≡ r′k,3 (mod 22k+1),

respectively, and 15−1
A is the inverse of 15 modulo 2A.

Proof. For the second congruence, if N = 22kn+ r′k,2 then

15N + 4 ≡ 15 · 22kn+ 22k−1 + 22k−2 ≡ 22k−1 + 22k−2 (mod 22k).

By Lemma 2, 15N+4 is not a square modulo 22k, proving the congruence. The first

and third congruences follow for similar reasons, the third making use of Lemma

3.

Similar computations to those provided after the proof of Corollary 1 allow us

to see that, for k = 2 and all n ≥ 0, we have

c′8(16n+ 12) ≡ 0 (mod 2),

c′8(16n+ 8) ≡ 0 (mod 2), and

c′8(32n+ 16) ≡ 0 (mod 2).

We close with an obvious companion result to Corollary 2.

Corollary 4. Let p ≥ 7 be prime, and let r, 1 ≤ r ≤ p− 1, be such that 15r + 4 is

a quadratic nonresidue modulo p. Then, for all n ≥ 0, c′8(pn+ r) ≡ 0 (mod 2).

Acknowledgement. The authors gratefully acknowledge George Andrews for

bringing [2] to our attention.
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