Section 1.1: Basic notation, axioms, definitions, propositions and an important theorem

Set notation The following notation will be used to denote sets of numbers that feature in the course

 $N = \{1, 2, 3, ...\}$ is the set of natural numbers (or the set of positive integers)

 $\mathbf{N}^* = \{0, 1, 2, 3, ...\}$ is the set of non-negative integers

Z = { ... , -3, -2, -1, 0, 1, 2, 3, ... } is the set of integers

Note, in particular, that 0 is not a natural number, nor is it considered either positive or negative as an integer.

Basic axioms The following are the basic axioms and properties of integer arithmetic. In the following statements, *a*, *b*, *c*, and *d* represent arbitrary integers.

Axioms of Equality

Reflexive:	a = a.
Symmetric:	If $a = b$, then $b = a$.
Transitive:	If $a = b$ and $b = c$, then $a = c$.

Axioms of Addition and Multiplication

Well-defined operations:	If $a = b$ and $c = d$, then $a + c = b + d$ and $ac = bd$.
Closure:	a + b and ab are integers.
Commutative:	a + b = b + a and $ab = ba$.
Associative:	(a + b) + c = a + (b + c) and $(ab)c = a(bc)$.
Identities:	a + 0 = a and $a(1) = a$.
Additive inverse:	There is an integer $-a$ such that $a + (-a) = 0$.
Cancellation:	If $ac = bc$ and $c \neq 0$, then $a = b$.
Distributive:	a(b+c)=ab+ac.

<u>Axioms of Inequality</u> [NB a < b is equivalent to b > a]

Tricohotomy: For any pair of integers, exactly one of the following is true:

a < b, a = b, or b < a.

Addition:	If $a < b$, then $a + c < b + c$.
Multiplication:	If $a < b$ and $c > 0$, then $ac < bc$.
Transitive:	If $a < b$ and $b < c$, then $a < c$.

Axiom of Well-Ordering [also known as the Principle of Well-Ordering]

If S is a non-empty collection of non-negative integers, then S has a smallest element.

Proposition 1.1 The following are basic properties of integral arithmetic.

(1) Zero property of multiplication:	For any $a, a(0) = 0$.
(2) Inequality property of inverses:	If $0 < a$, then $-a < 0$.
(3) Multiplication property of inverses:	For any $a, a(-1) = -a$.
(4) Zero-product:	If $ab = 0$, then $a = 0$ or $b = 0$.
(5) Cancellation property of addition for order:	If $a + c < b + c$, then $a < b$.
(6) Cancellation property of multiplication for order:	If $ac < bc$ and $c > 0$, then $a < b$.

Definition 1.2 Let *a* and *b* be integers. To say that $b \underline{divides} a$ means that a = bc for some choice of integer, *c*.

NB. Although tempting, we <u>do not</u> define *b* divides *a* to mean that the fraction represented by a/b is a whole number. As you'll see when you begin to construct proofs, it is easier to think of "divides" as a statement about multiplication, an operation that you have axioms to work with. A natural extension of this idea is the very important theorem [which we will prove later] known as the Division Algorithm.

Theorem 1.3 [The Division Algorithm] Let *a* and *b* be integers with b > 0. Then there are unique integers *q* and *r* satisfying the conditions a = qb + r and $0 \le r < b$.