Theorem 1.3 The Division Algorithm [DA] Let a and b be integers with b > 0. Then there are unique integers q and r which satisfy

$$a = bq + r$$
 and $0 \le r < b$.

Definition 1.4 Let a and b be integers that are not both zero and let d be in **N**. We say d is the greatest common divisor of a and b if

(i) d|a and d|b and,

(ii) given any c in **N** for which c|a and $c|b, c \leq d$.

We write (a, b) for the greatest common divisor of a and b.

NB. The concept of greatest common divisor can be extended to any [finite] collection of integers a_1, a_2, \ldots, a_n that are not all zero. The precise definition of (a_1, a_2, \ldots, a_n) is left as an exercise.

Definition 1.5 We say that integers a and b are <u>relatively prime</u> if (a, b) = 1.

Theorem 1.6 Let a and b be integers that are not both zero. Then there are integers x and y for which (a, b) = ax + by.

NB. Theorem 1.6 guarantees that (a, b) can always be expressed as an integral linear combination of a and b. This is a very useful idea when proving statements that involve gcd's.

Theorem 1.7 For a and b integers, not both zero, (a, b) = 1 if and only if ax + by = 1 for some choice of integers x and y.

NB. The statement of this theorem is based on a bi-conditional form. Establishing the statement is true involves proving two separate conditional statements [using whatever methodology you choose].

Proposition 1.8 Let d = (a, b) and write a = dm and b = dn. Then (m, n) = 1.

Proposition 1.9 Let a and b be integers with b > 0. Using the Division Algorithm, fix q and r in **Z** with a = bq + r and $0 \le r < b$. Then (a, b) = (b, r).

Result 1.10 The Euclidean Algorithm

Definition 1.11 Let a and b be non-zero integers and m a natural number. We say that m is the least common multiple of a and b if

(i) a|m and b|m and,

(ii) given any n in N for which a|n and $b|n, n \ge m$.

We write lcm(a, b) or [a, b] for the least common multiple.