7.11) Let $f: S \rightarrow T$ and $g: T \rightarrow U$.
(a) If $g \circ f$ is one-to-one, must both f and g be one-to-one?
(b) If $g \circ f$ is onto, must both f and g be onto?
i) If $g \circ f$ is one-to-one, f must be one-to-one.

Consider $f\left(s_{1}\right)=f\left(s_{2}\right) \quad$ for $s_{1}, s_{2} \in S$
$g\left(f\left(s_{1}\right)\right)=g\left(f\left(s_{2}\right)\right) \quad$ since g is a function, and $f\left(s_{1}\right), f\left(s_{2}\right) \in T$
$s_{1}=s_{1} \quad$ since $g \circ f$ is one-to-one
Thus, f is one-to-one
ii) If $g \circ f$ is onto, g must be onto.

Since $g \circ f$ is onto, $\forall u \in U, \exists s \in S$ э $g(f(s))=u$
Take $t=f(s)$, where, definitively, $t \in T$
So, $\forall u \in U, \exists t \in T$ э $g(t)=u$
And g is onto.
iii) If $g \circ f$ is one-to-one, g is not necessarily one-to-one.
iv) If $g \circ f$ is onto, f is not necessarily onto.

Consider such functions and sets defined as follows:
$S=\left\{s_{1}\right\}$
$T=\left\{t_{1}, t_{2}\right\}$
$U=\left\{u_{1}\right\}$
$f\left(s_{1}\right)=t_{1}$
$g\left(t_{1}\right)=u_{1}$
$g\left(t_{2}\right)=u_{1}$
$g \circ f\left(s_{1}\right)=u_{1}$
or, in set notation (see pages 59-60 of the textbook):
$f=\left\{\left(s_{1}, t_{1}\right)\right\}$
$g=\left\{\left(t_{1}, u_{1}\right),\left(t_{2}, u_{2}\right)\right\}$
$g \circ f=\left\{s_{1}, u_{1}\right\}$

There is no $s \in S$ such that $f(s)=t_{2}$.
$g\left(t_{1}\right)=u_{1}=g\left(t_{2}\right)$ but $t_{1} \neq t_{2}$.
In this examle, $g \circ f$ is both one-to-one, and onto. However, f is not onto (iv), and g is not one-to-one (iii).

