

Regression Examples

Marius Ionescu

09/29/2011

Example

Example

We study IQ versus Math SAT score. Our group has an average IQ of 100 with a SD of 15, and obtained an average SAT of 550 with SD of 80. We calculated the correlation coefficient to be $r = .6$ and found that the scatterplot was football-shaped.

Example

Example

We study IQ versus Math SAT score. Our group has an average IQ of 100 with a SD of 15, and obtained an average SAT of 550 with SD of 80. We calculated the correlation coefficient to be $r = .6$ and found that the scatterplot was football-shaped.

- If a student scores a 150 on the IQ test, what do you estimate for their SAT score?

Example

Example

We study IQ versus Math SAT score. Our group has an average IQ of 100 with a SD of 15, and obtained an average SAT of 550 with SD of 80. We calculated the correlation coefficient to be $r = .6$ and found that the scatterplot was football-shaped.

- If a student scores a 150 on the IQ test, what do you estimate for their SAT score?
- If a student scores 710 on SAT, what do we estimate for their IQ?

Fact

Suppose that x and y are normally distributed and linearly correlated (they form a football shaped date). Then

Fact

Suppose that x and y are normally distributed and linearly correlated (they form a football shaped date). Then

- For each x , the strip above x is normally distributed.

Fact

Suppose that x and y are normally distributed and linearly correlated (they form a football shaped date). Then

- For each x , the strip above x is normally distributed.
- The average is the predicted value of y

Fact

Suppose that x and y are normally distributed and linearly correlated (they form a football shaped date). Then

- For each x , the strip above x is normally distributed.
- The average is the predicted value of y
- SD equals RMS error.

Example

Example

Suppose that the average height of men is 68 inches with $SD= 2.7$, and the average weight of women is 63 inches with $SD= 2.5$. Assume that the correlation between the height of husbands and wifes is 0.25 and assume that the data is normally distribute.

Example

Example

Suppose that the average height of men is 68 inches with $SD= 2.7$, and the average weight of women is 63 inches with $SD= 2.5$. Assume that the correlation between the height of husbands and wifes is 0.25 and assume that the data is normally distribute.

- What percentage of women are over 68 inches?

Example

Example

Suppose that the average height of men is 68 inches with $SD= 2.7$, and the average weight of women is 63 inches with $SD= 2.5$. Assume that the correlation between the height of husbands and wifes is 0.25 and assume that the data is normally distribute.

- What percentage of women are over 68 inches?
- What percentage of women married to a men of height 72" are over 68"?

Example

Example

Suppose that the average height of men is 68 inches with $SD= 2.7$, and the average weight of women is 63 inches with $SD= 2.5$. Assume that the correlation between the height of husbands and wifes is 0.25 and assume that the data is normally distribute.

- What percentage of women are over 68 inches?
- What percentage of women married to a men of height 72" are over 68"?
- What percentile of women married to a men of height 72" is 68"?

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

- Of all those who score in the 68th percentile on the midterm, what is the expected outcome on the final (with error estimates)?

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

- Of all those who score in the 68th percentile on the midterm, what is the expected outcome on the final (with error estimates)?
- Of those who score with 90th percentile on the midterm, what percentile is expected for the final.

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

- Of all those who score in the 68th%ile on the midterm, what is the expected outcome on the final (with error estimates)?
- Of those who score with 90th%ile on the midterm, what percentile is expected for the final.
- Of those who score 75 on midterm what is the percentile we expect for the final?

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

- Of all those who score in the 68th%ile on the midterm, what is the expected outcome on the final (with error estimates)?
- Of those who score with 90th%ile on the midterm, what percentile is expected for the final.
- Of those who score 75 on midterm what is the percentile we expect for the final?
- If you score 58 on the midterm what do you expect for the score on the final (with error estimates)

Example

Example

Suppose that in this class the average of the first midterm will be 72, $SD = 20$, the average of the final exam will be 75, $SD = 10$, and the scores have a correlation coefficient of $r = 0.6$.

- Of all those who score in the 68th%ile on the midterm, what is the expected outcome on the final (with error estimates)?
- Of those who score with 90th%ile on the midterm, what percentile is expected for the final.
- Of those who score 75 on midterm what is the percentile we expect for the final?
- If you score 58 on the midterm what do you expect for the score on the final (with error estimates)
- If you score 70.8 on the final what is your expected score on the midterm?

Example

Example

Suppose that the average of violent crimes during night in a city is 235, $SD = 34$, the average night temperature is 60, $SD = 7$, and the correlation between crimes and temperature is 0.5.

Example

Example

Suppose that the average of violent crimes during night in a city is 235, $SD = 34$, the average night temperature is 60, $SD = 7$, and the correlation between crimes and temperature is 0.5.

- If the temperature is 74, how many violent crimes are predicted tonight?

Example

Example

Suppose that the average of violent crimes during night in a city is 235, $SD = 34$, the average night temperature is 60, $SD = 7$, and the correlation between crimes and temperature is 0.5.

- If the temperature is 74, how many violent crimes are predicted tonight?
- If there were 200 crimes last night, how hot was it?

Example

Example

Suppose that the average of violent crimes during night in a city is 235, $SD = 34$, the average night temperature is 60, $SD = 7$, and the correlation between crimes and temperature is 0.5.

- If the temperature is 74, how many violent crimes are predicted tonight?
- If there were 200 crimes last night, how hot was it?
- What is the RMS error for these predictions?

Example

Example

Suppose that the average of violent crimes during night in a city is 235, $SD = 34$, the average night temperature is 60, $SD = 7$, and the correlation between crimes and temperature is 0.5.

- If the temperature is 74, how many violent crimes are predicted tonight?
- If there were 200 crimes last night, how hot was it?
- What is the RMS error for these predictions?
- If tonight is hotter than 68% of all nights, what is the predicted percentile for crimes?

Fact

What happens if the relationship between the variables is not linear?

Fact

What happens if the relationship between the variables is not linear?

- *For exponential relationships*

$$y = Ae^{Bx}$$

we can use linear regression with $\ln y$ and x :

$$\ln y = \ln A + \ln e^{Bx} = \ln A + Bx.$$

Fact

What happens if the relationship between the variables is not linear?

- *For exponential relationships*

$$y = Ae^{Bx}$$

we can use linear regression with $\ln y$ and x :

$$\ln y = \ln A + \ln e^{Bx} = \ln A + Bx.$$

- *For parabolic data we can try a general quadratic:*

$$y = Ax^2 + Bx + C,$$

where we have two variables: x^2 and x .