Unit 3: Variation and the Normal Curve

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Review: Standard Units

"z-score" ("std units"):
$$z = \frac{x - \mu_x}{\sigma_x}$$

- the number of σ 's above average
- (if negative, below average)

Ex: Data 3, 3, 5, 6, 7, 9: $\mu = 5.5$

▶ differences: -2.5, -2.5, -.5, .5, 1.5, 3.5

•
$$\sigma = \mathsf{RMS}$$
 of differences ≈ 2.15

▶
$$z \approx -1.17, -1.17, -.23, .23, .70, 1.63$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

They seem large — remember, 3σ away from μ, which is ±3 in std units, is very rare.

They seem large — remember, 3σ away from μ, which is ±3 in std units, is very rare.

Can we check? Well, μ = 0, σ = 1, so the sum of their squares should be 100 (so that their RMS is 1).

- They seem large remember, 3σ away from μ, which is ±3 in std units, is very rare.
- Can we check? Well, μ = 0, σ = 1, so the sum of their squares should be 100 (so that their RMS is 1).
- ► But (-5.8)² + (4.3)² + (6.1)² + ... is adding up to more than 100 fast.

- They seem large remember, 3σ away from μ, which is ±3 in std units, is very rare.
- Can we check? Well, μ = 0, σ = 1, so the sum of their squares should be 100 (so that their RMS is 1).
- ► But (-5.8)² + (4.3)² + (6.1)² + ... is adding up to more than 100 fast.

▶ In fact, (10.2)² alone is more than 100.

- They seem large remember, 3σ away from μ, which is ±3 in std units, is very rare.
- Can we check? Well, μ = 0, σ = 1, so the sum of their squares should be 100 (so that their RMS is 1).
- ► But (-5.8)² + (4.3)² + (6.1)² + ... is adding up to more than 100 fast.

- ▶ In fact, (10.2)² alone is more than 100.
- So yes, they are too big to be in std units.

Normal table (Area between -z and z)

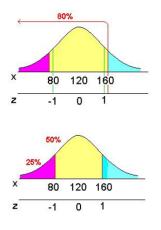
z	Area(%)	Z	Area(%)	Z	Area(%)	z	Area(%)
0.0	0.0	1.15	74.99	2.3	97.86	3.45	99.944
0.05	3.99	1.2	76.99	2.35	98.12	3.5	99.953
0.1	7.97	1.25	78.87	2.4	98.36	3.55	99.961
0.15	11.92	1.3	80.64	2.45	98.57	3.6	99.968
0.2	15.85	1.35	82.3	2.5	98.76	3.65	99.974
0.25	19.74	1.4	83.85	2.55	98.92	3.7	99.978
0.3	23.58	1.45	85.29	2.6	99.07	3.75	99.982
0.35	27.37	1.5	86.64	2.65	99.2	3.8	99.986
0.4	31.08	1.55	87.89	2.7	99.31	3.85	99.988
0.45	34.73	1.6	89.04	2.75	99.4	3.9	99.99
0.5	38.29	1.65	90.11	2.8	99.49	3.95	99.992
0.55	41.77	1.7	91.09	2.85	99.56	4	99.9937
0.6	45.15	1.75	91.99	2.9	99.63	4.05	99.9949
0.65	48.43	1.8	92.81	2.95	99.68	4.1	99.9959
0.7	51.61	1.85	93.57	3	99.73	4.15	99.9967
0.75	54.67	1.9	94.26	3.05	99.771	4.2	99.9973
0.8	57.63	1.95	94.88	3.1	99.806	4.25	99.9979
0.85	60.47	2	95.45	3.15	99.837	4.3	99.9983
0.9	63.19	2.05	95.96	3.2	99.863	4.35	99.9986
0.95	65.79	2.1	96.43	3.25	99.885	4.4	99.9989
1	68.27	2.15	96.84	3.3	99.903	4.45	99.9991
1.05	70.63	2.2	97.22	3.35	99.919		
1.1	72.87	2.25	97.56	3.4	99.933		

Weights in the population of a city follow the normal curve, with $\mu=$ 140, $\sigma=$ 30. About what % of pop weighs over 185?

- ▶ In std units, 185 is $\frac{185-140}{30} = 1.5$. Normal table says % > 1.5 or < -1.5 is (100 86.64)% = 13.36%. We only want right half: $\frac{13.36\%}{2} = 6.68\%$.
- Much too "accurate"; this is only approximation: 6.7%, or even 7%.

(日) (同) (三) (三) (三) (○) (○)

Normal approx: Ex 2


Scores on a college entrance exam follow normal curve (odd!), with $\mu = 120$ and $\sigma = 40$.

(a) About what score is the 80th %ile?

(b) About what is the IQR?

In normal table, we need z that gives percent in center, not 80%, but (80 - (100 - 80))% = 60%, which is z = .85. So 80th %ile of scores is [undoing std units] 120 + $.85(40) \approx 154$.

We need z so that 50% of the data is between z and -z, and thats z = .70. So the 3rd quartile is 120 + 40(.70), the 1st is 120+40(-.70), and their difference is the IQR, 2(40(.70)) = 56.

Data following the normal curve has avg 80 and std dev 10.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- (a) What is the 15th %ile?
- (b) What is the 83rd %ile?
- (c) What % of data is between 85 and 95?
- (d) What % of data is between 60 and 90?