A Quick Introduction to Factor Analysis

From Data Analysis: A Statistical Primer for Psychology Students by Edward L. Wike:

... [T]here are elaborate extensions of r to multivariate data ... another case is k variables (factor
analysis). Fortunately, for both the student and author, none of these extensions will be considered
here.

From Linear Algebra and its Applications by Gilbert Strang:

... [T]he technique is so much needed that, even starting as an unwelcome black sheep of multi-
variate analysis, it has spread from psychology into biology and economics and the social sciences.

From linear algebra:

A “matrix” is a rectangular (in this discussion, usually square) array of numbers; e.g.,

3 5 7 -1 3 0
1 2 3 3 5 2
0 2 -1

We can add two matrices of the same dimensions, by adding corresponding entries; and we can
multiply a matrix by a number, by multiplying all the entries in the matrix by that number:

L RS P P T Y

A square matrix is a “diagonal matrix” if the only nonzero entries (if any) are on the “main
diagonal” (upper left to lower right):

5 0 0
0 -1 0
0 0 O

The “transpose” of a matrix is the (new) matrix obtained turning the rows into columns (and vice
versa):

T 3 1 -1 3 0 -1 3 0
[i’ 2 ;] =[5 2 3 5 2 =3 5 2
7 3 0 2 -1 0 2 -1

If a (square) matrix A has the property that AT = A (as this one does), then A is called “symmet-
ric”. This just amounts to saying that, for each ¢ and j, the entry in row ¢ and column j is equal
to the entry in row j and column 4, i.e., the matrix is symmetric about its main diagonal.

Relevant example:
Suppose we have several variables, the scores on 4 exams, one in math, one in physics, one in
English, and one in history — one list of 4 scores for each student in a class. Taking the exams
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in pairs, we can find a correlation coefficient for each pair. We then form a matrix with the rows
and columns labelled M(ath), P(hysics), E(nglish) and H(istory); the entry in the X row and Y
column is the correlation coefficient between X and Y. The result is a symmetric matrix (since the
correlation between X and Y is the correlation between Y and X) with 1’s on the main diagonal
(since the correlation between X and X is 1):

M P FE H

1 74 24 24
. 1 24 24
24 24 1 74
24 024 714 1

SRS
N

We can multiply two matrices, provided that the number of columns in the first matrix is equal to
the number of rows in the second matrix:

2 1 3(2) +5(3) +7(1) 3(1)—1—5(0)—1—7(—1)]_[28 —4}
) —

{?g;]ffl—Lm+mHm1 1 -2

Let I denote a square matrix with all 1’s on the main diagonal and 0’s in all other positions. Then
I behaves for matrix multiplication as 1 does for number multiplication:

S O =
o = O
_ o O

a
d
g

>0 o
T O
Il
> 0o o
I~ O

a
d
g
So I is called the “identity matrix” (of its size). If two square matrices A and B have the property
that AB = I, then we call B the “inverse” of A and write B = A~!.

Matrix multiplication is not commutative: It is often the case that AB # BA, even for square
matrices of the same size (so that the products are the same size as well. But there are some rules

that do work:

(AB)C = A(BC) (AB)T = BT AT (AB)"'!=B71A™!

A one-column matrix is a “column vector”. If U and V are column vectors of the same length,
then their “dot product” UTV has only one row and column; i.e., it is just a number:

1111
9 1| =1(=1)+2(1) +3(0) = 1
3 0

For a square matrix B, the entry in row 4 and column j of the product BT B is the dot product
of the i-th and j-th columns of B. For a few matrices B, this dot product will be 1 if ¢ = j and
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0 if i # j; in other words BTB = I, or BT = B~!. Such a matrix is called “orthogonal”. One
useful fact about orthogonal matrices is that they preserve dot products; i.e., if B is an orthogonal
(square) matrix and U and V are column vectors, the

(BO)Y'(BV)=U"BT"BV =UTIV = (U'V) .

For a square matrix A, if a column vector V and a number ¢ are such that AV = ¢V, then V is
called an “eigenvector” of A, and c is the corresponding “eigenvalue”:

1 74 24 247r11 2.22 1
74001 024 2401 _ 2.22 _ 999 1
24 024 1 741 2.22 ' 1
24 24 74 1 1 2.22 1

1 74 24 24 1 1.26 1
4001 24 24 1 _ 1.26 _1.96 1
24 024 1 74| -1 —1.26 ' -1
24 24 74 1 -1 —1.26 -1

Big Theorem: If A is any symmetric matrix (with real number entries), then there is a matrix B
having an inverse, for which BT AB is a diagonal matrix. In this case, the columns of B are all
eigenvectors of A, with corresponding eigenvalues the main diagonal entries of BT AB. Moreover,
this B can be chosen to be orthogonal (i.e., B~! = BT).

Computer programs like Mathematica can take a symmetric matrix A and find the corresponding
orthogonal matrix B and the diagonal matrix BT AB quickly; but to do it by hand is difficult and
can lead to approximation errors.

Using Mathematica on our earlier 4-by-4 matrix, we see that

1 0
-1 0
0 and 1
0 -1

are also apparently eigenvectors, both with corresponding eigenvalue .26:

f1 .74 24 247717 [ 26 17
74124 24 —1| | =26] o] -1
24 24 1 74(] 0 0 0
24 24 74 11Lol L o | L 0
Tl 74 24 247707 [ 0 T F 0 7
4124 24 L0 | 0 | o]0
24 24 1 4|1 26 U
24 24 74 11Ll-1] L[-26. [ -1




The dot product of any two different ones of the four eigenvectors of this matrix are already 0, but
to make the dot product of any one with itself equal to 1, we need to choose the correct number
multiple; and Mathematica has given us the required number multiple:

1 1 1 0
? ? I/i 2.22 0 0 0

-5 5 —= 0

B— % 21 V2 : BT AR — 0 126 0 O —C

—3 —3 0 ——= 0 0 26 0

V2
11 0 1 0 0 0 26

2 2 V2

Notice that, if the entries on the main diagonal of a diagonal matrix are all > 0, then it is the
square of another diagonal matrix:

r222 0 0 0
0 126 0 0
=10 o0 2 o0
Lo 0 o0 .26
rv222 0 0 0 222 0 0 0
1o 126 0 0 0 126 0 0 | _gg
10 0 V26 0 0 0 V26 0 |
L 0 0 0 V.26 0 0 0 V.26
So we get:
A= BCB" = BSSB™ = BSS"B" = (BS)(BS)" = FF"
where F' = BS.

Notice, though, that this “factorization” of A is not at all unique: If @) is any orthogonal matrix,
then
A=FFT = FIFT = F(QQ")FT = (FQ)(FQ)" = (F)(F1)"

where I} = FQ.

Also, if we subtract any diagonal matrix from a symmetric matrix, we get another symmetic matrix,
which can be factored in the same way: For any diagonal matrix D of the same size as A,

A=GGT + D

where G can be multiplied by any orthogonal matrix (and other changes may also be possible)
without changing the result, A.

Factor analysis takes a correlation matrix (call it R), like the one relating scores on various ex-
ams above, and tries to account for as much as of the correlations off the main diagonal with as
few “factors” as possible; the factors here are weighted sort-of-averages (technical term: linear
combinations) of the tests, with loadings given by the columns of the G when we write

R=GG"+D
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For instance, the matrix A that we have been using as an example works perfectly for factor
analysis: If we subtract the diagonal matrix .26/ and diagonalize the resulting matrix, since two
of the main diagonal entries in BT AB are 0, the matrix F' = BS has two columns of all 0’s, which
can be ignored when we find “factors”:

5
.5
)
)

A=FFT + 261 where F =

SRR

So we can say that all of the variability off the main diagonal in A is reflected in a “general
intelligence” factor that is the same in all 4 tests (as shown in the first column of F', all .7’s) and a
“numerical vs. literary” factor that shows the opposition the scores in math-physics (.5 and .5 in
the second column of F') and English-history (-.5 and -.5 in that column).

That interpretation looks very mathematical and irrefutable, until we remember that the represen-
tation of A in this form is not unique. For instance, we also have A = GGT + .26 where

This time there doesn’t seem to be a “general intelligence” factor or opposition between a numerical
vs. a literary intelligence; rather the math-physics pair seems to vary independently from the
English-history pair. Also, we now have 3 factors to consider instead of 2.

From Strang (p. 227):

In a typical problem [from social science], the original factors may have substantial loadings on
dozens of variables, and such a factor is practically impossible to interpret. It has a mathematical
meaning, as a [column vector]|, but no useful meaning to a social scientist. Therefore he tries
[inserting an orthogonal factor Q)] that produces a simple structure, with large loadings in a few
components and negligible loadings elsewhere. ... Thus, two experts ... could very easily produce
completely different interpretations of the same data.



