NAME_____

- No calculator is allowed.
- If you have any questions, please raise your hand and ask. The worst that will happen is that I will say, "I can't tell you."
- Do the problems that you find easiest first. Take deep breaths between questions.
- There are 100 points on this exam, and you have 110 minutes.
- I hope you all do well. Good luck!

Question	Points	Points Earned
1	13	
2	10	
3	10	
4	10	
5	7	
6	10	
7	10	
8	10	
9	10	
10	10	
TOTAL	100	

Take three deep breaths.

What information have you been given?

What information do you need?

How can you get from one to the other?

Trigonometric Product Formulas:

$$\sin(A)\sin(B) = \frac{1}{2}\left[\cos(A - B) - \cos(A + B)\right]$$

$$\cos(A)\cos(B) = \frac{1}{2}\left[\cos(A - B) + \cos(A + B)\right]$$

$$\sin(A)\cos(B) = \frac{1}{2}\left[\sin(A + B) + \sin(A - B)\right]$$

 $1.\ (13 \text{ points})$ Evaluate the following limits. Show your work.

a)
$$\lim_{x \to 0^+} \frac{1}{e^x - 1} - \frac{1}{x}$$

b)
$$\lim_{x \to \infty} \left(\frac{x-2}{x}\right)^x$$

c)
$$\lim_{\theta \to 0} \frac{\sin(\theta)}{1 + \cos(\theta)}$$

2. (10 points) Evaluate the integral if it converges, otherwise show it diverges. $\int_2^\infty \frac{dx}{(x-7)^4}$

3. (10 points) Evaluate the integral if it converges, otherwise show it diverges. $\int_4^\infty \frac{dx}{x\sqrt{x-1}}$

4. (10 points) Use the Comparison Theorem to determine whether or not the following integral is convergent. (You do not need to evaluate the integral.) $\int_{1}^{\infty} \frac{1}{3x^{2} + 2\sin(2x) + 2} dx$

5. (7 points) Find the (x, y) coordinates of all the points of intersection for the curves $r = \sin(\theta)$ and $r = \cos(\theta)$.

6. (10 points) Set up BUT DO NOT EVALUATE an integral for the area of the region that is inside both $r = \sin(\theta)$ and $r = 1 - \sin(\theta)$.

7. (10 points) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for the curve $x(t) = 3t^5 + 4t + 5$, $y(t) = 3t^2 + 2t + 3$ at the point (x, y) = (5, 3).

- 8. (10 points) Consider the cochleoid given by $r = \begin{cases} \frac{\sin(\theta)}{\theta} & \theta \neq 0 \\ A & \theta = 0 \end{cases}$.
 - a) Find the value for A which makes this function a continuous function.

b) Sketch the resulting curve for $0 \le \theta \le 2\pi$.

- 9. (10 points) For the following polar curves find the equation for the curve in cartesian coordinates. Then identify the curve (i.e. using English).
 - a) $\tan(\theta) = 5$

b)
$$r = \frac{1}{1 + \cos(\theta)}$$
.

10. (10 points) Find the length of the curve given in polar coordinates as $r = e^{\theta/2}$, for $0 \le \theta \le 2\pi$.