Problems 13.3, Page 115

- 2. $z_x = ye^{x/y}(1/y) = e^{x/y}$, so $z_x(1,1) = e$; $z_y = ye^{x/y}(-xy^{-2}) + e^{x/y} = e^{x/y}(1-x/y)$, so $z_y(1,1) = 0$; so the tangent plane is z = e + e(x-1) 0(y-1) = ex.
- 4. (a) The 3x² (really 3x³) term alone is not linear, so this is not an equation of the plane.
 (b) The student neglected to substitute (2,3) for (x, y) in the partial derivatives.
 (c) z = 3(2²)(x 2) 2(3)(y 3) 1 = 12x 6y 7.
- 8. $f_T(480, 20) \approx (28.46 27.85)/(500 480) = .0305$ and $f_p(480, 20) \approx (25.31 27.85)/(22 20) = -1.27$, so the desired tangent line is $V \approx 27.85 + .0305(T 480) 1.27(p 20)$.
- 11. $df = y\cos(xy) \, dx + x\cos(xy) \, dy$
- 14. $dh = (e^{-3t}\cos(x+5t))dx + (-3e^{-3t}\sin(x+5t) + 5e^{-3t}\cos(x+5t))dt$
- 15. $df = e^{-y}dx xe^{-y}dy$, so df(1,0) = dx dy.
- 16. $dg = 2x\sin(2t)dx + 2x^2\cos(2t)dt$, so $dg(2,\pi/4) = 4\sin(\pi/2)dx + 8\cos(\pi/2)dt = 4dx$.
- 22. (a) Letting *m* denote the (fixed) mass of the liquid in kg, $\rho = m/V$, so $d\rho = -mV^{-2}dV = -mV^{-2}\beta V dT = -(m/V)\beta dT = -\rho\beta dT$.

(b) At T = 20 I estimate ρ as 998 and the slope $d\rho/dT$ as $(990 - 998)/(58 - 20) \approx -.21$, so $\beta = -(1/\rho)(d\rho/dT) \approx = -(1/998)(-.21) = .00021$. And at T = 80, $\rho \approx 972$ and $d\rho/dT \approx (960 - 972)/(100 - 80) = -.6$, so $\beta \approx -(1/972)(-.6) \approx .00062$. (My approximations differ substantially from the solution book, which gives answers of 0.00015 and 0.0005 respectively.)

