
Chapter 2: Solving Linear Equations

2.3. Elimination Using Matrices
As we saw in the presentation, we can use “elimination” to make a system of linear equations

into an “upper triangular system” that is easy to solve, and then we can use “back-substitution”
to solve it. But as we saw, there are cases where there is no solution or infinitely many of them.
First we introduce some terms to help simplify and describe linear systems in terms of matrices
and vectors, and then we use them to investigate when elimination fails. The basic concepts are so
simple that we can name them in the course of an example:

Example. The linear system
x + 2y + 3z = 8
x + 3y = 7
x + 2z = 3

has

coefficient matrix

 1 2 3
1 3 0
1 0 2

 and augmented matrix

 1 2 3 8
1 3 0 7
1 0 2 3

 .

(A matrix like the augmented matrix may have a marker of some sort between columns to help the
eye keep things separate; e.g., the augmented matrix may have a marker between the variables and
the constant terms on the other sides of the equals sign: 1 2 3 | 8

1 3 0 | 7
1 0 2 | 3

 .)

The three operations on the equations in the linear system amount in the context of matrices to
“elementary row operations”:

• subtract from one row a (scalar) multiple of another row,

• reverse two rows, or

• multiply a row by a nonzero scalar.

These operations change the original augmented matrix into “row equivalent” ones that correspond
to systems with the same solutions. For example, we might subtract from the second row 1 times
the first row, and subtract from the third row 1 times the first row, giving the augmented matrix 1 2 3 8

0 1 −3 −1
0 −2 −1 −5

 .

Then we could subtract from the third row −2 times the second row (i.e., add to the third row 2
times the second row), giving the augmented matrix 1 2 3 8

0 1 −3 −1
0 0 −7 −7

 .

The coefficient matrix is now upper triangular, so we can turn the augmented matrix back into a
system and use back substitution to find the solution: −7z = −7, so z = 1; then y − 3z = −1, so
y = −1 + 3(1) = 2; and x+ 2y + 3z = 8, so x = 8− 2(2)− 3(1) = 1.
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2.4. Rules for Matrix Operations
We want to interpret the example in a different way, and for this we need to introduce “matrix

multiplication.” If matrix A is, say, m× n (i.e., has m rows and n columns) and B is n× p, then
the product matrix AB is the m× p matrix in which the entry in the i-th row and j-th column is
the dot product of i-th row of A with the j-th column of B:

Example:

[
1 −2 3
2 0 1

] 1 3
4 −2
2 −1


=

[
1(1)− 2(4) + 3(2) 1(3)− 2(−2) + 3(−1)

2(1) + 0(4) + 1(−2) 2(3) + 0(−2) + 1(−1)

]
=

[
−1 4

0 5

]
.

We will collect some other properties of matrix multiplication later, but for right now, note that in
most cases, AB 6= BA: Of course, if the sizes don’t match, one of these may make sense while the
other does not. But even if they do match, the commutative law doesn’t hold:[

0 1
1 0

] [
a b
c d

]
=

[
c d
a b

]
but

[
a b
c d

] [
0 1
1 0

]
=

[
b a
d c

]
.

Fortunately, though, the associative law does hold: For all matrices A,B,C of the proper dimen-
sions,

A(BC) = (AB)C .

For each positive integer n, there is a square n × n matrix I (or In) with the property that 1
has among numbers; i.e., IA = A and AI = A for any matrix A (of the proper size). That matrix
has 1’s down the “main diagonal” — upper left to lower right — and 0’s everywhere else: 1 0 0

0 1 0
0 0 1

 a b c
d e f
g h i

 =

 a b c
d e f
g h i

 .

Though we don’t need it at this point, the text, and therefore we, note that there is another
operation on matrices — provided they have the same dimensions: addition. It is as simple as it
can be: add the corresponding entries:[

1 2 3
4 5 6

]
+

[
−1 2 2

3 −3 1

]
=

[
0 4 5
7 2 5

]
.

It is clear that matrix addition is commutative (unlike multiplication), and associative: For all
A,B,C of the proper dimensions,

A+B = B +A A+ (B + C) = (A+B) + C .

And you can check that matrix products distribute over matrix sums (from both sides):

A(B + C) = AB +AC (B + C)A = BA+ CA .
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Example. Question: Which matrices A =

[
a b
c d

]
“commute with” E =

[
1 0
2 1

]
? Such an A

satisfies AE = EA, i.e., [
a+ 2b b
c+ 2d d

]
=

[
a b

c+ 2a d+ 2b

]
,

so a + 2b = a, b = b, c + 2d = c + 2a and d = d + 2b. From these equations, we can see that
b = 0 and d = a; but there are no restrictions on c, and a only has to agree with d. So the A that

commute with this E have the form

[
a 0
c a

]
for any a and c.

With these operations, we see that we can do matrix algebra with matrices as objects. In some
cases we may have to worry about whether the matrices have the right dimensions, but if we restrict
to square matrices of the same size, we can add and multiply at will.

2.5. Inverse Matrices
If A is square, then there may be another matrix A−1 with the property that A−1A = I. If so,

that A−1 is called the inverse of A, and we also have AA−1 = I. (If A is not square, say 2×3, then
it is possible for A to have a “one-sided inverse”, but the other is impossible: we may have AB = I2
for some B, but we cannot get BA = I3, or indeed CA = I3 for any C. Why not? Well, such a C
must only have 2 columns, and those columns can only span a plane in 3-space, and the columns
of CA must lie in that plane — but the three columns of I3 don’t all lie in the same plane.)

Fact (and definition): If we do an elementary row operation (say φ) to an identity matrix, the
resulting matrix E, an “elementary matrix,” has the property that, for any matrix A (of the proper
number of rows), the product EA is the result of doing φ to A.

So we can think of the steps of elimination as multiplications on the left by elementary matrices:

Example. (Continued): 1 2 3 8
1 3 0 7
1 0 2 3

 [A : b]

2 − 1
-

 1 2 3 8
0 1 −3 −1
1 0 2 3

 [E21A : E21b] where E21 =

 1 0 0
−1 1 0

0 0 1


3 − 1

-

 1 2 3 8
0 1 −3 −1
0 −2 −1 −5

 [E31E21A : E31E21b] where E31 =

 1 0 0
0 1 0
−1 0 1


3 + 2 2

-

 1 2 3 8
0 1 −3 −1
0 0 −7 −7

 [E32E31E21A : E32E31E21b] where E21 =

 1 0 0
0 1 0
0 2 1


As we did above, from the last augmented matrix, we can read off the solution: We get −7z = −7,
so z = 1; and from y− 3z = −1 we get y = −1 + 3(1) = 2; and finally from x+ 2y+ 3z = 8 we get
x = 8− 2(2)− 3(1) = 1.
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Example. Solving
x − y + z = 0

2x + 2y + z = 1
3x + 2y + 2z = 2

:

 1 −1 1 0
2 −2 1 −3
3 2 2 2

 [A : b]

2 − 2 1
-

 1 −1 1 0
0 0 −1 1
3 2 2 2

 [E21A : E21b] where E21 =

 1 0 0
−2 1 0

0 0 1


3 − 3 1

-

 1 −1 1 0
0 0 −1 −3
0 5 −1 2

 [E31E21A : E31E21b] where E31 =

 1 0 0
0 1 0
−3 0 1


3 ↔ 2

-

 1 −1 1 0
0 5 −1 2
0 0 −1 −3

 [P23E31E21A : P23E31E21b] where P23 =

 1 0 0
0 0 1
0 1 0


The elementary matrix P23 is an example of a permutation matrix, with one 1 in each row and
column and the rest 0’s; it is called that because premultiplication (i.e., multiplication on the left)
by one of these rearranges (i.e., “permutes”) the rows.

Anyway, the coefficient matrix is now upper triangular, so we can read off the solution: −z = −3
gives z = 3; then 5y − z = 2 gives y = (2 + 3)/5 = 1; and x− y + z = 0 gives x = 1− 3 = −2.

Let’s note one more fact about inverse matrices: For invertible matrices A,B of the same size,

(AB)−1 = B−1A−1 .

(It works with any number of factors: (ABCD)−1 = D−1C−1B−1A−1, as you can easily check
by breaking the product into products of two matrices.) Why? Well, multiply A−1B−1 by AB
on either side, and you realize that A−1 isn’t next to A, nor is B−1 next to B; so without the
commutative law, it’s not clear that the product is the identity. But if we reverse the order, it
comes out right:

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I ,

and similarly (AB)(B−1A−1) = I.
So is there a good way to decide whether a given square matrix has an inverse, and to find

that inverse? Before we show how we can answer the question(s) in general, let’s do the 2×2 case,
which has a formula that we can remember. (This is a special case of the “classical adjoint” result
to which Ahmad has already referred, but I don’t want to introduce that yet.) We have already
talked about the “determinant” of a 2×2 matrix, a number associated with the matrix:

det

[
a b
c d

]
= ad− bc .

To get the inverse of this matrix, we reverse the main diagonal entries, negate the off-diagonal
entries, and divide by the determinant:[

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.
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We can easily check that this works:

1

ad− bc

[
d −b
−c a

] [
a b
c d

]
=

1

ad− bc

[
da− bc db− bd
−ca+ ac −cb+ ad

]
=

1

ad− bc

[
ad− bc 0

0 ad− bc

]
= I .

What if the determinant is 0? We have seen that this is exactly when the second row in this matrix
is a multiple of the first, i.e., this matrix is singular, and has no inverse.

Example. [
1 −2
3 2

]−1

=
1

8

[
2 2
−3 1

]
=

[
1
4

1
4

−3
8

1
8

]
.

Example. (from the text): Verify that if M = A− UW−1V , then

M−1 = A−1 +A−1U(W − V A−1U)−1V A−1 .

Because the “if” refers to W−1, we can assume that W is invertible, but it doesn’t seem entirely
fair to assume that A and (W − V A−1U are invertible. But we will pretend that they are, and go
on from there. We must show that at least one of the products of M with the claimed M−1 is the
identity, with M either on the right or the left. So let’s try MM−1. For the sake of sanity, I’m
going to set

B = (W − V A−1U)−1

Okay, let’s see if it works:

(A− UW−1V )(A−1 +A−1U(W − V A−1U)−1V A−1)
= (A− UW−1V )(A−1 +A−1UBV A−1) incorporating B
= (A− UW−1V )A−1 + (A− UW−1V )A−1UBV A−1 one distributive law
= AA−1 − UW−1V A−1

+AA−1UBV A−1 − UW−1V A−1UBV A−1 the other distributive law
= I − UW−1V A−1 + UBV A−1 − UW−1V A−1UBV A−1 AA−1 = I
= I − U [W−1 −B +W−1V A−1UB]V A−1 two distributive laws, in reverse
= I − U [W−1 − {I +W−1V A−1U}B]V A−1 distributive law in reverse
= I − U [W−1 − {W−1W −W−1V A−1U}B]V A−1 W−1W = I
= I − U [W−1 −W−1{W − V A−1U}B]V A−1 distributive law
= I − U [W−1 −W−1I]V A−1 definition of B
= I − U [W−1 −W−1]V A−1 W−1I = W−1

= I − UOV A−1 = I O is matrix of 0’s

Aha! It came out right.

Matrices, especially square ones, can be divided into rectangular pieces, and then we can treat
the pieces as if they were numbers, just remembering that multiplication isn’t commutative. As
long as the pieces on the main diagonal are square, the rest of the sizes seem to work out for
multiplication and addition as needed. The results are called “block matrices.”

Example. Suppose

M =

[
I3 A
O B

]
,
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where I3 is the 3×3 identity matrix, B is 2×2 invertible, O is a matrix of 0’s and A is anything
that fits. Is M invertible?

First comment: To “fit”, the A must be a 3×2 matrix, and O must be a 2×3 matrix of 0’s.
Now if the entries in M were numbers instead of matrices, we could reverse the entries on the main
diagonal, take the negatives of the other two entries, and divide by the determinant B. But the
determinant I3B −AC is meaningless — the dimensions are wrong in the first product — and we

can’t divide by matrices anyway. It does, though, give a block matrix

[
I3 −A/B
O B−1

]
that we can

try out; we only have to figure out how to interpret A/B — is it B−1A or AB−1? The first of these
is meaningless, because the dimensions are wrong, so let’s try the second:[

I3 A
O B

] [
I3 −AB−1

O B−1

]
=

[
I3 +AO −AB−1 +AB−1

O BB−1

]
=

[
I3 Ô
O I2

]
= I5

where Ô means the 3×2 matrix of 0’s — notice that AO is the 3×3 matrix of 0’s. At any rate, we
see that M is invertible.
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