Chapter 2: Solving Linear Equations

2.7. Transposes and Permutations

At this point, switch to the first part of the presentation for Unit 4.

We mentioned earlier that a matrix that has one 1 in each row and column and 0's otherwise is a *permutation matrix*, because premultiplication by it permutes the rows of the other matrix:

Γ	0	1	0	a	b	c		q	r	s	
	0	0	1	q	r	s	=	x	y	z	.
L	1	0	0	x	y	z		a	b	c	

Questions:

- (a) What is the (i, j)-th entry of $A^T A$, in terms of A? [Answer: The dot product of the *i*-th and *j*-th columns of A.]
- (b) In view of (a), what are the main diagonal entries of $A^T A$? [Answer: The squares of the norms of the columns of A.]
- (c) If P is a permutation matrix, what is $P^T P$? [Answer: I, so $P^T = P^{-1}$. (We'll see later that this means permutation matrices are examples of "unitary matrices", but there are other unitary matrices.)]

The text also points out that, if A is invertible, then we could, if we wanted, rearrange the rows of A so that it has an LU-decomposition: PA = LU where P is a permutation matrix. But how could we find that P? The author says that PA = LU is useful in numerical analysis. I'll take his word for it.

At this point, switch to the second part of the presentation for Unit 4.