
Chapter 4: Orthogonality

4.2. Projections

Proposition. Let A be a matrix. Then N(ATA) = N(A).

Proof. If Ax = 0, then of course ATAx = 0. Conversely, if ATAx = 0, then

0 = x · (ATAx) = xTATAx = (Ax)TAx = (Ax) · (Ax) ,

so Ax = 0 also.

Corollary. If the columns of the matrix A are independent, then ATA is invertible.

Proof. Suppose A is m × n, so that its rank is r(≤ m, of course). Then ATA is an n × n matrix,
and N(ATA) = N(A) consists only the zero vector, so it is invertible.

Take a subspace V of Rm. We want to figure out how to find the orthogonal projection of each
vector b in Rm onto V , i.e., the closest point p in V to b. (That the closest p to b really makes
b− p perpendicular to V is clear by geometry, but we can also do it as a miminization problem in
multivariate calc — see the next section.) We can see from geometry that the function that assigns
to each b its projection p is a linear transformation — it respects addition and scalar multiplication
— so there is an m ×m matrix P for which Pb = p for each b. [WARNING: In the display on
page 210, Strang has a typo: P is m×m, not n× n.] To find this P , it’s enough to find a matrix
that does what we want to an invertible matrix B (because if PB = MB, then we can multiply on
the right by B−1 and say P = M .

Choose a basis for V and use it as the columns of a matrix A; suppose dim(V ) = n, so that A
is m× n. We claim that the projection matrix P that we want is

P = A(ATA)−1AT .

This product at least does make sense: Because the columns of A are a basis for V , they are
independent, so ATA is an invertible n× n matrix; and the dimensions of the factors are right for
multiplication. Now let’s form a basis for Rm starting with the columns of A and adding in a basis
c1, . . . , cm−n for the orthogonal complement V ⊥ of V . The projection should leave the columns of
A unchanged and turn the c’s to 0 :[

A c1 . . . cm−n
] P→

[
A Om×(m−n)

]
;

so let’s check that the P given by the (ugly) formula above does that:
Multiplying the columns of A by AT gives ATA (a matrix of dot products of the columns of A

with each other, but we don’t need that right now), and multiplying the c’s by AT gives columns
of 0’s because the c’s were orthogonal to the columns of A. So multiplying by the factors in the
product gives the sequence of block matrices

[
A c1 . . . cm−n

] AT

→
[
ATA 0 . . . 0

] (ATA)−1

→
[
In On×(m−n)

]
A→
[
A Om×(m−n)

]
.

So A(ATA)−1AT is the P we want.

1



Notation: Strang consistently uses b for a general vector Rm, A for the matrix whose columns are
a basis for the subspace onto which we are projecting, p for the projection of b onto that subspace
and e for the “error vector” b− p (orthogonal to V ). He also uses x̂ = (x1, . . . , xn) for the column
of coefficients that gives p in terms of the columns of A, i.e., Ax̂ = p. So, because we know
Ax̂ = Pb = A(ATA)−1ATb, and that A can be cancelled from the left (its nullspace is just the 0
vector), we see that x̂ = (ATA)−1ATb, i.e., x̂ is the solution to ATAx = ATb.

Example. We want to find the orthogonal projection p of b = (2, 0, 3) on the subspace of R3 with
basis (1, 1, 1) and (1, 0,−1), and to find the projection matrix, and to verify that e = b − p is
orthogonal to the subspace:

A =

 1 1
1 0
1 −1

 , (ATA)−1 =

[
3 0
0 2

]−1
=

[
1/3 0

0 1/2

]

P =

 1 1
1 0
1 −1

[ 1/3 0
0 1/2

] [
1 1 1
1 0 −1

]
=

 5/6 1/3 −1/6
1/3 1/3 1/3
−1/6 1/3 5/6

 ,

p = P

 2
0
3

 =

 7/6
5/3

13/6

 , AT (b− p) =

[
1 1 1
1 0 −1

] 5/6
−5/3

5/6

 =

[
0
0

]

Special Case (silly): A is invertible, i.e., V = Rm: The closest point in V to any b in Rm is b itself,
so p = b, P = I and x̂ = A−1b.

Special Case (not silly): A is a single nonzero vector a, i.e., V is a line: Then ATA = a · a is a
nonzero number, so its inverse is just its reciprocal, and

P =
aaT

a · a
.

Moreover,

p =
aaT

a · a
b =

a(aTb)

a · a
=

a · b
a · a

a , so x̂ =
a · b
a · a

,

because in this case x̂ is a single number, the coefficient of a when writing p.

Example. We want to find the projection p of b = (1, 2, 3) onto (the span of) a = (1, 0,−1) and
the corresponding x̂, and to check that e = b− p is orthogonal to a:

P =
1

1 + 0 + 1

 1
0
−1

 [ 1 0 −1
]

=

 1/2 0 −1/2
0 0 0

−1/2 0 1/2

 , p = P

 1
2
3

 =

 −1
0
1

 ,

x̂ =
a · b
a · a

=
1 + 0 + (−3)

1 + 0 + 1
= −1 , a · e =

 1
0
−1

 ·
 2

2
2

 = 0
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Note that any projection matrix P , onto the subspace V , say, multiplies all the vectors in Rm

into V , and if we multiply again by P , they don’t change. Thus,

P 2b = Pb for every b in Rm , i.e., P 2 = P .

The term for a matrix that equals its own square is idempotent. There is more about idempotent
matrices in the exercises.

4.3. Least Squares Approximation
In this section the objective is to find the n-dimensional subspace of Rn+1 that best approximates

a set of m points in Rm, with “best” being measured as “minimizing the sum of the squares of
the vertical distances from the points to the subspace”, where vertical means in the direction of
the axis for the last variable. This is the least squares approximation to the points. It seemed to
me that this question, with vertical distances, was basically different from the last section, which
measures orthogonal distances; but by writing both problems in neutral variables (so that I can
keep straight which are the constants and which are the variables), we can see they are the same:
Sticking to 3-dimensional space, so that we can visualize things, we can write

The projection problem: Given vectors (p1, p2, p3), (q1, q2, q3), (r1, r2, r3) in R3, find the point
(r̂1, r̂2, r̂3) = g(p1, p2, p3) + h(q1, q2, q3) closest to (r1, r2, r3), i.e., minimizing

E = (r1 − r̂1)
2 + (r2 − r̂2)

2 + (r3 − r̂3)
2

= (r1 − (gp1 + hq1))
2 + (r2 − (gp2 + hq2))

2 + (r3 − (gp3 + hq3))
2 .

In our earlier notation r = b, p and q are the columns of A, and we seek r̂ = p and x̂ = (g, h).

The least squares problem: Given points (p1, q1, r1), (p2, q2, r2), (p3, q3, r3) in R3, with r on the
vertical axis, find the subspace, given by the equation r̂ = gp + hq, that minimizes the sum of the
squares of the vertical distances from the given points to the corresponding points on the subspace,
i.e., minimizing

E = (r1 − r̂1)
2 + (r2 − r̂2)

2 + (r3 − r̂3)
2

= (r1 − (gp1 + hq1))
2 + (r2 − (gp2 + hq2))

2 + (r3 − (gp3 + hq3))
2 .

The least squares problem, though, arises in a different way: Given data values with n “input”
(or “explanatory”, or “predictor”) variables x1, x2, . . . , xn and one “output” (or “response”) variable
y, find the coefficients ci of the linear equation

ŷ = c1x1 + c2x2 + · · ·+ cnxn

that best approximates the data. From this point of view, the x-values of the data points become
the constants, the entries in the matrix X (which used to be A), the y-values of the data points
become b, the c’s become the coefficients for writing the approximation ŷ for y in terms of x-values
of the data points — in other words, what x̂ was in the other version of the problem (ARGH!).

So this time we aren’t interested as much in what corresponds to p or P as what corresponds
to x̂, i.e., the solution c to XTXc = y, where

X =


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n

...
...

. . .
...

xm,1 xm,2 . . . xm,n


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At least, m, the number of data points, is usually much larger than n, the number of variables, and
we can often control those values in an experiment, so the columns of X are usually independent.
Thus, XTX is usually invertible, and we can solve for c = (XTX)−1XTy.

Example. Find the plane ŷ = cx1 +dx2 that is the least squares approximation to the data points
(0,1,4), (1,0,5), (1,1,8), (-1,2,7):

X =


0 1
1 0
1 1
−1 2

 , y =


4
5
8
7

 , (XTX)−1 =

[
3 −1
−1 6

]−1
= (1/17)

[
6 1
1 3

]

c = (XTX)−1XTy = (1/17)

[
6 1
1 3

] [
6

26

]
=

[
62/17
84/17

]
;

so the best approximation to these points is ŷ = (62/17)x1 + (84/17)x2.

Example. Find the line ŷ = mx + b in R2 that is the least squares approximation to (i.e., is the
regression line for) the data points (0,1), (1,2), (2,5), (3,6):

There seems to be only one input variable here, but we can create a second having the value 1 at
each data point, to take care of the constant term b that means the line is not a subspace:

X =


0 1
1 1
2 1
3 1

 , y =


1
2
5
6

 , (XTX)−1 =

[
14 6
6 4

]−1
=

[
0.2 −0.3
−0.3 0.7

]

c = (XTX)−1XTy =

[
0.2 −0.3
−0.3 0.7

] [
42
24

]
=

[
1.8
0.8

]
;

so the best approximation to these points is ŷ = 1.8x + 0.8.

Example. The heights h in feet of a ball t seconds after it is thrown upward are (0,0.2), (0.2,3.0),
(0.4,5.3), (0.6,7.0), (0.8,7.5), (1.0,5.5). Of course the height should be related to the time by an
equation of the form h = a + bt + ct2 where c is negative. What are best approximations for the
values of a, b, c? These are the initial height, initial velocity, and half the gravitational constant
respectively — we don’t know that the ball was thrown on Earth.

Besides the column of 1’s, we also add a column of t2’s. Then we use R again:

T =



1 0 0
1 0.2 0.04
1 0.4 0.16
1 0.6 0.36
1 0.8 0.64
1 1 1

 , h =



0.2
3.0
5.3
7.0
7.5
5.5

 , (T TT )−1 =

 0.8214286 −2.946429 2.232143
−2.9464286 18.169643 −16.741071

2.2321429 −16.741071 16.741071



 â

b̂
ĉ

 = (T TT )−1T Th =

 −0.08571429
19.88571429
−13.92857143


Apparently the ball was not thrown on Earth; it was thrown out of a shallow hole on a smaller
planet.
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4.4. Orthogonal Bases and Gram-Schmidt
Vectors are orthonormal iff they are pairwise orthogonal and they all have length 1. If the

columns of the matrix Q (traditionally that letter) and Q is m× n where m ≥ n, then QTQ = In.
In particular, if Q is n×n — and still has orthonormal columns — then Q is invertible with inverse
its transpose; it is then called orthogonal. (Why not “orthonormal”, I don’t know, and apparently
neither does Strang.)

Suppose we have a basis q1, . . . , qn for Rn consisting of orthonormal vectors. What does that
do for us? Well, for any vector v in Rn, suppose we have written v in terms of the q’s:

v = c1q1 + · · ·+ cnqn .

Then for each k from 1 to n:

qTk v = c1q
T
k q1 + · · ·+ cnq

T
k qn = c1(0) + · · ·+ ck(1) + · · ·+ cn(0) = ck .

So we can find the coefficients to write v in terms of q1, . . . , qn just by taking dot products with
the q’s

We want to start with a basis a1, . . . ,an for Rn and build a new basis q1, . . . , qn that consists
of orthonormal vectors.

How do we get from the a’s to the q’s? Well, the first step is easy: We just “normalize” a1,
i.e., give it length 1, by dividing by its length:

q1 = a1/||a1|| .

Then we have to replace a2 with one that is orthogonal to q1. By Section 4.2, we have a way to
get one: project a2 onto q1, and subtract the result from a2. Then we normalize that result:

e2 = a2 −
qT1 a2

qT1 q1
q1 = a2 − (qT1 a2)q1 , q2 = e2/||e2|| ;

the projection formula is simpler because q1 have length 1. Then the next step: subtract from a3

its projections on q1 and q2 (which gives something orthogonal to the first two q’s), and normalize
the result.

e3 = a3 − (qT1 a3)q1 − (qT2 a3)q2 , q3 = e3/||e3|| .

And so on.
And what is the process of going back from the q’s to the a’s? Using the dot product fact that

we noted earlier, we get

ak =
n∑

i=1

(qTi ak)qi .

If we write this in terms of matrices, we get

[
a1 a2 . . . an

]
=
[
q1 q2 . . . qn

]


qT1 a1 qT1 a1 . . . qT1 a1

qT2 a1 qT2 a2 . . . qT2 an
...

...
. . .

...
qTna1 qTna2 . . . qTnan

 .

If we call A the matrix with columns the a’s, Q the matrix with columns the q’s, and R the matrix
of dot products, then A = QR. Moreover, look at the entries qTi aj in the lower triangle of R, i.e.,
i > j. Then aj can be written as a combination of the q’s up to j; and qi is orthogonal to the
earlier q’s, so it is orthogonal to aj . So the lower triangle is all 0’s, i.e., R is upper triangular.
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Example. The vector (1,−2, 2)/3 has length 1. We want to find an basis for R3 that includes it,
and then write the corresponding A as QR where Q is orthogonal and R is upper triangular:

The given vector together with (0,1,0) and (0,0,1) is a basis for R3, so we can use this basis

a1 = q1 =

 1/3
−2/3

2/3

 , a2 =

 0
1
0

 , a3 =

 0
0
1

 , A =

 1/3 0 0
−2/3 1 0

2/3 0 1

 .

Then

e2 = a2 − (qT1 a2)q1 =

 0
1
0

− (−2/3)

 1/3
−2/3

2/3

 =

 2/9
5/9
4/9

 , q2 =

 2/
√

45

5/
√

45

4/
√

45


and

e3 = a3 − (qT1 a3)q1 − (qT2 a3)q2 =

 0
0
1

− (2/3)

 1/3
−2/3

2/3

− (4/
√

45)

 2/
√

45

5/
√

45

4/
√

45


=

 −2/5
0

1/5

 , q3 =

 −2/
√

5
0

1/
√

5


We could check that the q’s are pairwise orthogonal and each have length 1. We get

Q =

 1/3 2/
√

45 −2/
√

5

−2/3 5/
√

45 0

2/3 4/
√

45 1/
√

5

 , R =

 1 −2/3 2/3

0 5/
√

45 4/
√

45

0 0 1/
√

5

 .

6


