Chapter 8: Applications

8.8. Markov Matrices, Population, and Economics

Most of this material is presented clearly enough in the presentation for Unit 11, but here is a
bit of supplementary material.

The proof of the Perron-Frobenius Theorem of positive matrices given in the text has some
gaps, so here is a complete proof.

Theorem. Perron-Frobenius Theorem for A > 0. Suppose A is an n X n matriz with all
(strictly) positive entries. Then the largest eigvalue \pqar of A in absolute value is (real) positive
and has an eigvector with strictly positive entries.

Proof. Consider the function f on the piece P of the hyperplane 1 4+x2+---+x, = 1 in R"™ where
all the x;’s are positive, given by

/(@) = min((A@);)/z; = min(} aij%) .

The minimum of a family of continuous functions is continuous, so f is continuous on P. For «’s
approaching an edge of P, where z; = 0, say, the function }_; a;j(z;/z;) for that i approaches
00, so the minimum, i.e., the value of f, is given by one (or more) of the other functions, which
are continuous near that edge. So we can extend f continuously to the boundary of P and get a
function f from P, i.e., P together with its boundary, into R.

A continuous function on a “compact” set like P always takes on its highest value (this is called
the Extreme Value Theorem in Math 323), so we can pick ¢ in P for which f(&) = t;4z is highest.
We claim this x is not on the boundary of P: Assume, by way of contradiction, that it is on the
edge z; = 0, and take the function f = > j akj% that gives the value of f near that point (so
x #0). Then Jfy/0x; = ag;/xy > 0, so f is increasing in the direction of the positive x;-axis. (In
fact, it is increasing in the direction of all axes except x.) So f(x) is not the largest f ever gets,
and we have the contradiction. So f takes its largest value on P, not on the edge.

Next, we want to show Ax = t4.®; so assume not. Now the strange definition of f was
chosen so that Au > f(u)w (i.e., the “>” holds in every component) with equality in at least one
component, for every u in P; so our assumption that we don’t have equality means we must have
the strict inequality (Ax); > tmaex; for some i . Now Az is probably not on the hyperplane that
contains P, but the formula for f takes the same value on the whole ray from the origin through
Az, and that ray hits P somewhere, say at y. Because Ax — t,,,,@ has one strictly positive entry
and all the entries of A are strictly positive, all the entries of A(Ax — ty,q,2) are strictly positive;
so we get that (Ay); > tmazyi in every component, i.e., f(y) > tmer = f(x). But that contradicts
our choice of @. Therefore, Ax = 42 T; 1.€., timaz 1S an eigenvalue of A, with eigenvector @ with all
positive entries.

One last detail: Is it possible that some eigenvalue A of A, maybe negative or complex, has
absolute value greater than t,,4,,7

(Interlude: The absolute value of a complex number a + bi is va? + b2, its distance from the
origin in the complex plane. We still have |p + ¢| < |p| + |g| and |pg| = |p||q|, even for complex
scalars p, q.)

The answer is no, because we can take absolute values and use the Triangle Inequality.: If
Az = Az where X\ and z may have positive entries, then

All2l = [Az] < Al ,



where |z|, the vector with entries the absolute values of the entries in z, is in P, so [\ < f(]2]) <
tmax- D

For our purposes, the point of this theorem is that, if a Markov matrix M has all nonzero
entries, then it has a maximum eigenvalue, with a corresponding vector of positive entries. That
maximum eigenvalue must be 1, because if x is an eigenvector corresponding to the eigenvector
tmaz, then for every vector we have

tmaz [ 1 1 ... 1]e=[11 ... 1|Mz=[11 ... 1]=.
So repeated left multiplications by M will produce a sequence of vectors approaching a steady

state, no matter what vector we start with.

At this point, switch back to the presentation for Unit 11.



