
Chapter 8: Applications

8.3. Markov Matrices, Population, and Economics
Most of this material is presented clearly enough in the presentation for Unit 11, but here is a

bit of supplementary material.
The proof of the Perron-Frobenius Theorem of positive matrices given in the text has some

gaps, so here is a complete proof.

Theorem. Perron-Frobenius Theorem for A > 0. Suppose A is an n × n matrix with all
(strictly) positive entries. Then the largest eigvalue λmax of A in absolute value is (real) positive
and has an eigvector with strictly positive entries.

Proof. Consider the function f on the piece P of the hyperplane x1 +x2 + · · ·+xn = 1 in Rn where
all the xi’s are positive, given by

f(x) = min
i

((Ax)i)/xi = min
i

(
∑
j

aij
xj
xi

) .

The minimum of a family of continuous functions is continuous, so f is continuous on P . For x’s
approaching an edge of P , where xi = 0, say, the function

∑
j aij(xj/xi) for that i approaches

∞, so the minimum, i.e., the value of f , is given by one (or more) of the other functions, which
are continuous near that edge. So we can extend f continuously to the boundary of P and get a
function f from P , i.e., P together with its boundary, into R.

A continuous function on a “compact” set like P always takes on its highest value (this is called
the Extreme Value Theorem in Math 323), so we can pick x in P for which f(x) = tmax is highest.
We claim this x is not on the boundary of P : Assume, by way of contradiction, that it is on the
edge xi = 0, and take the function fk =

∑
j akj

xj

xk
that gives the value of f near that point (so

xk 6= 0). Then ∂fk/∂xi = aki/xk > 0, so f is increasing in the direction of the positive xi-axis. (In
fact, it is increasing in the direction of all axes except xk.) So f(x) is not the largest f ever gets,
and we have the contradiction. So f takes its largest value on P , not on the edge.

Next, we want to show Ax = tmaxx; so assume not. Now the strange definition of f was
chosen so that Au ≥ f(u)u (i.e., the “≥” holds in every component) with equality in at least one
component, for every u in P ; so our assumption that we don’t have equality means we must have
the strict inequality (Ax)i > tmaxxi for some i . Now Ax is probably not on the hyperplane that
contains P , but the formula for f takes the same value on the whole ray from the origin through
Ax, and that ray hits P somewhere, say at y. Because Ax− tmaxx has one strictly positive entry
and all the entries of A are strictly positive, all the entries of A(Ax− tmaxx) are strictly positive;
so we get that (Ay)i > tmaxyi in every component, i.e., f(y) > tmax = f(x). But that contradicts
our choice of x. Therefore, Ax = tmaxx; i.e., tmax is an eigenvalue of A, with eigenvector x with all
positive entries.

One last detail: Is it possible that some eigenvalue λ of A, maybe negative or complex, has
absolute value greater than tmax?

(Interlude: The absolute value of a complex number a + bi is
√
a2 + b2, its distance from the

origin in the complex plane. We still have |p + q| ≤ |p| + |q| and |pq| = |p||q|, even for complex
scalars p, q.)

The answer is no, because we can take absolute values and use the Triangle Inequality.: If
Az = λz where λ and z may have positive entries, then

|λ||z| = |Az| ≤ A|z| ,
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where |z|, the vector with entries the absolute values of the entries in z, is in P , so |λ| ≤ f(|z|) ≤
tmax.

For our purposes, the point of this theorem is that, if a Markov matrix M has all nonzero
entries, then it has a maximum eigenvalue, with a corresponding vector of positive entries. That
maximum eigenvalue must be 1, because if x is an eigenvector corresponding to the eigenvector
tmax, then for every vector we have

tmax

[
1 1 . . . 1

]
x =

[
1 1 . . . 1

]
Mx =

[
1 1 . . . 1

]
x .

So repeated left multiplications by M will produce a sequence of vectors approaching a steady
state, no matter what vector we start with.

At this point, switch back to the presentation for Unit 11.
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