
Vector sum and difference



Combinations

Combinations of (1, 0, 1) and (0, 2, 1):

(1, 2, 2) = 1(1, 0, 1) + 1(0, 2, 1)

(1, 4, 3) = 1(1, 0, 1) + 2(0, 2, 1)

(−1, 2, 0) = (−1)(1, 0, 1) + 1(0, 2, 1)

But (1, 2, 1) 6= c(1, 0, 1) + d(0, 2, 1) because to make the first two
components right, c = 1 and d = 1, but then the third component
is wrong.



“Dependent” vectors

A set of vectors is dependent if one of them is a lin comb (i.e., in
the span) of the ones before it, and (of course) independent
otherwise. [Technically, that’s not quite right, but it’s equivalent
unless the first one in the list is the zero vector.]

So

I (1, 0, 1) is independent.

I (1, 0, 1), (0, 2, 1) is independent.

I (1, 0, 1), (0, 2, 1), (1, 4, 3) is dependent.

I (1, 0, 1), (0, 2, 1), (1, 2, 1) is independent.



Cauchy-Buniakowsky-Schwarz inequality

|v ·w| ≤ ||v|| ||w||

Proof:
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Geometry of the dot product

In fact, we could write the v ·w in terms of ||v||, ||w|| and the
cosine of the angle θ between them. Here’s a proof that assumes
that picking new axes doesn’t change dot products (so it
essentially begs the question):

In the plane of ||v||, ||w|| and
the origin, pick axes so that
v = (||v||, 0); then w =
(||w|| cos θ, ||w|| sin θ), so

v ·w = ||v||(||w|| cos θ)

+ 0(||w|| sin θ)

= ||v|| ||w|| cos θ .



A better way

It would make better sense to show first that choices of new axes
don’t change dot products, but that is better saved for later in the
course.



“Orthogonal” — i.e., perpendicular — vectors

If v ·w = 0, then the cosine of the angle between them is 0, so
that angle is right, so the vectors are perpendicular — we call that
“orthogonal”.

Example:  1
2
−1

 ·
 2

1
4

 = 0



Matrices

A matrix is a rectangular array of numbers.

Example: A =

[
1 2 0
−1 1 2

]
The (1,3) entry, i.e., entry in the 1st (horizontal) row and 3rd
(vertical) column is a1,3 = 0.

There are 2 rows and 3 columns, so the matrix is 2×3.



Multiplying a matrix by a vector

Av =

[
1 2 0
−1 1 2

] 3
4
5


=

[
1(3) + 2(4) + 0(5)
−1(3) + 1(4) + 2(5)

]
=

[
11
11

]
=

[
(1, 2, 0) · (3, 4, 5)

(−1, 1, 2) · (3, 4, 5)

]
= 3

[
1
−1

]
+ 4

[
2
1

]
+ 5

[
0
2

]

Looking at the last version, we can see that Av = b has a solution
v exactly when b is a lin comb of the columns of A.



Matrix equation ⇐⇒ system of lin eqns

[
2 3
1 −1

] [
x
y

]
=

[
6
1

]
⇐⇒

{
2x + 3y = 6
x − y = 1

“Row picture” “Column picture”



2×2 system, row picture version

I Graphs of both equations are lines.

I Usually, they are intersecting lines, so there is one common
solution.

I But they may be the same line, so there are infinitely many
solutions.

I Or they may be parallel lines, with no common solution.



2×2 system, column picture version

I Columns of the coefficient matrix are usually independent, so
every column vector of constants is a lin comb of them in
exactly one way.

I But they may be dependent, so their span is a line, and a
column vector of constants on that line can be expressed in
infinitely many ways, . . .

I . . . while a column vector of constants off that line cannot be
expressed at all.

The coefficient matrix is singular if the columns are dependent,
i.e., if there is not exactly one solution.



Two versions, same result

For the system
ax + by = e
cx + dy = f

, there is not a unique

solution if

I cx + dy is a multiple of ax + by , i.e. c/a = d/b, i.e.,
ad − bc = 0.

I

[
b
d

]
is a multiple of

[
a
c

]
, i.e., b/a = d/c, i.e.,

ad − bc = 0.

From earlier courses, you may recognize the number ad − bc as
the determinant of the coefficient matrix.



3×3 systems, row version

Graphs of the 3 equations are planes.

In most cases, the 3 planes meet in a point and there is only
one common solution.

But all three planes may go through the same line, so there
are infinitely many solutions.

Or two of the planes may be parallel, or
each pair of planes may meet in a line, but
the three lines are parallel; so there are no
common solutions.



Upper triangular system

With a “upper triangular” coefficient matrix (and all diagonal
entries nonzero), we can always solve for the unique solution, by
“back-substitution”.

Example: A =

 3 −1 1
0 −1 −1
0 0 2

: Then for any b = (r , s, t), the

equation Av = b amounts to, for the unknown vector v = (x , y , z):

3x − y + z = r − y − z = s 2z = t

We must have z = t/2, so y = −(s + t/2) = −s − t/2, so
x = 1

3(r + (−s − t/2)− t/2) = r/3− s/3− t/3. x
y
z

 =

 1
3 r −

1
3s −

1
3 t

−s − 1
2 t
1
2 t





Upper triangular system

With a “upper triangular” coefficient matrix (and all diagonal
entries nonzero), we can always solve for the unique solution, by
“back-substitution”.

Example: A =

 3 −1 1
0 −1 −1
0 0 2

: Then for any b = (r , s, t), the

equation Av = b amounts to, for the unknown vector v = (x , y , z):

3x − y + z = r − y − z = s 2z = t

We must have z = t/2, so y = −(s + t/2) = −s − t/2, so
x = 1

3(r + (−s − t/2)− t/2) = r/3− s/3− t/3. x
y
z

 =

 1
3 r −

1
3s −

1
3 t

−s − 1
2 t
1
2 t

 =

 1
3 −1

3 −1
3

0 −1 −1
2

0 0 1
2

 r
s
t





So, . . .

Can we turn every system into an upper triangular one?
No, but we can do a lot of them. But how?

Note that the following operations change a system into a new
system that has the same solutions:

I Subtract from one equation a multiple of another equation.

I Reverse two equations.

I Multiply an equation by a nonzero constant.

We’ll use the first one as much as we can to “pivot” on diagonal
entries, only resorting to the second when the first “breaks down
temporarily” (as the text puts it), and to the third only later.



Pivot example 1

2x + y = 4
x + 2y − z = 6

4x − 3z = 7



Pivot example 1

2x + y = 4
x + 2y − z = 6

4x − 3z = 7

“Pivot” on the coefficient 2 of x in the first equation, using it to
get rid of the x terms in the other two equations: First subtract
from the second equation 1/2 times the first: (The “multiplier”
1/2 comes from dividing the “pivot” 2 into the value 1 to be
turned into 0.)

2x + y = 4
3
2y − z = 4

4x − 3z = 7



Pivot example 1

2x + y = 4
3
2y − z = 4

4x − 3z = 7

Then subtract from the third equation 4/2 = 2 times the first:

2x + y = 4
3
2y − z = 4
−2y − 3z = −1



Pivot example 1

2x + y = 4
3
2y − z = 4
−2y − 3z = −1

Now pivot on the coefficient 3/2 of y in the second equation to
get rid of the y -term in the third: Subtract from the third equation
−2/(3/2) = −4/3 times the second:

2x + y = 4
3
2y − z = 4

−13
3 z = 13

3



Pivot example 1

2x + y = 4
3
2y − z = 4

−13
3 z = 13

3

The system is now upper triangular, and back-substitution gives
the answer: z = −1, then y = 2

3(4 + (−1)) = 2, then
x = 1

2(4− 2) = 1.



Pivot example 2

x + 2y − z = 7
2x + 4y + 3z = 4
x + y − 3z = 9



Pivot example 2

x + 2y − z = 7
2x + 4y + 3z = 4
x + y − 3z = 9

“Pivot” on the coefficient 1 of x in the first equation, using it to
get rid of the x terms in the other two equations: First, subtract
from the second equation 2 times the first:

x + 2y − z = 7
5z = −10

x + y − 3z = 9



Pivot example 2

x + 2y − z = 7
5z = −10

x + y − 3z = 9

Then subtract from the third equation 1 times the first:

x + 2y − z = 7
5z = −10

−y − 2z = 2



Pivot example 2

x + 2y − z = 7
5z = −10

−y − 2z = 2

The coefficient of the second variable y in the second equation is
0, so “elimination breaks down temporarily”, as the text puts it.
But we can get back on track by reversing the second and third
equations — we leave the first out of it, because it still has the
x-term, so it would only complicate matters:

x + 2y − z = 7
−y − 2z = 2

5z = −10



Pivot example 2

x + 2y − z = 7
−y − 2z = 2

5z = −10

And now the system is upper triangular and back-substitution gives
the answer: z = −10/5 = −2, then y = −(2 + 2(−2)) = 2, then
x = 7− 2(2) + (−2) = 1.



Pivot example 3

x + 2y − z = 6
2x + y = 4
x − y + z = −2 or 1



Pivot example 3

x + 2y − z = 6
2x + y = 4
x − y + z = −2 or 1

Subtract from the second equation 2 times the first:

x + 2y − z = 6
−3y + 2z = −8

x − y + z = −2 or 1



Pivot example 3

x + 2y − z = 6
−3y + 2z = −8

x − y + z = −2 or 1

Subtract from the third equation 1 times the first:

x + 2y − z = 6
−3y + 2z = −8
−3y + 2z = −8 or − 5



Pivot example 3

x + 2y − z = 6
−3y + 2z = −8
−3y + 2z = −8 or − 5

Now use the −3 in the second equation to get rid of the y -term in
the third: Subtract from the third equation −3/− 3 = 1 times the
second:

x + 2y − z = 6
−3y + 2z = −8

0 = 0 or 3



Pivot example 3

x + 2y − z = 6
−3y + 2z = −8

0 = 0 or 3

Now “elimination has broken down permanently”, because the next
pivot, the coefficient of third variable z in the third equation is 0,
and there is no equation below it to move up. But we can still read
off the solutions to the system: The equation 0 = 0 places no
restriction on the variables, so we could take any value for, say, z ,
find the corresponding value for y and then the corresponding
value for x . So the initial system with last constant −2 has
infinitely many solutions. But the equation 0 = 3 is false no matter
what values x , y , z have, so the initial system with last constant 1
has no solutions.



An example like some from the text

For which values of a does elimination break down temporarily?
How about permanently?

ax + ay + 2az = a
ax − y = 3

2ax + 3ay + 2az = 4a

I

I

I



An example like some from the text

For which values of a does elimination break down temporarily?
How about permanently?

ax + ay + 2az = a
ax − y = 3

2ax + 3ay + 2az = 4a

I a = 0: Breaks down permanently, because there can be no
first pivot — the first column is all 0’s. Hereafter, suppose
a 6= 0.

I

I



An example like some from the text

For which values of a does elimination break down temporarily?
How about permanently?

ax + ay + 2az = a
ax − y = 3

2ax + 3ay + 2az = 4a

I a = 0: Breaks down permanently

I a = −1: Breaks down temporarily, because the first two
equations start −x − y , so after eliminating x in the second
and third equations, there is a 0 in the second pivot position.
But we can then switch the second and third — the third now
begins with −y — to get a nonzero pivot.

I



An example like some from the text
For which values of a does elimination break down temporarily?
How about permanently?

ax + ay + 2az = a
ax − y = 3

2ax + 3ay + 2az = 4a

I a = 0: Breaks down permanently
I a = −1: Breaks down temporarily
I For other a’s, eliminate x in the second and third equations.

We get
(−1− a)y − 2az = 3− a

ay − 2az = 2a

Then we can use −1− a to eliminate ay in the third equation,
and the coefficient of z in the last equation is
−2a− (−2a)a/(−1− a) = (2a + 4a2)/(−1− a). This is 0
when 2a + 4a2 = 0, i.e., a = 0 (which we handled) or
a = −1/2: Breaks down permanently.



An example like some from the text

For which values of a does elimination break down temporarily?
How about permanently?

ax + ay + 2az = a
ax − y = 3

2ax + 3ay + 2az = 4a

I a = 0: Breaks down permanently

I a = −1: Breaks down temporarily

I a = −1/2: Breaks down permanently.

So these three are the requested values.


