
The problem:

Two systems differing only in constant terms:

x + y − z = 2
2x + 3y + z = 11

x − y − 2z = −2

x + y − z = 1
2x + 3y + z = 6

x − y − 2z = −2



The solution:
Solve them both at once — the operations depend only on the
coefficient matrix: 1 1 −1 2 1

2 3 1 11 6
1 −1 −2 −2 −2


2 − 2 1

3 − 1
-

 1 1 −1 2 1
0 1 3 7 4
0 −2 −1 −4 −3


3 + 2 2

-

 1 1 −1 2 1
0 1 3 7 4
0 0 5 10 5


3 × 1/5

-

 1 1 −1 2 1
0 1 3 7 4
0 0 1 2 1





(continued)

2 − 3 3

1 + 3
-

 1 1 0 4 2
0 1 0 1 1
0 0 1 2 1


1 − 2

-

 1 0 0 3 1
0 1 0 1 1
0 0 1 2 1

 .

We’ve continued the elimination process until the coefficient
matrix is the identity matrix, so we can just read off the solutions
to the two systems: 3

1
2

 and

 1
1
1

 respectively.



Definition

Gauss-Jordan reduction: The use of elementary row operations on
a matrix to get it into “reduced row echelon form”: The first
nonzero entry in any row is a 1 (called a “leading 1”); each leading
1 is to the right of the one above it; the entries above the leading
1’s are 0’s; and any rows of all 0’s come last.

Example


1 0 0 0 5 7
0 1 0 0 2 −1
0 0 1 0 4 3
0 0 0 1 1 0


 0 1 2 0 1 0

0 0 0 1 −3 −1
0 0 0 0 0 0





The problem:

To find the inverse of

A =

 1 1 −1
2 3 1
1 −1 −2

 :



The solution:
Solve three systems at once, with columns of constants the
columns of I3: 1 1 −1 1 0 0

2 3 1 0 1 0
1 −1 −2 0 0 1


2 − 2 1

3 − 1
-

 1 1 −1 1 0 0
0 1 3 −2 1 0
0 −2 −1 −1 0 1


3 + 2 2

-

 1 1 −1 1 0 0
0 1 3 −2 1 0
0 0 5 −5 2 1


3 × 1/5

-

 1 1 −1 1 0 0
0 1 3 −2 1 0
0 0 1 −1 2/5 1/5





(continued)

2 − 3 3

1 + 3
-

 1 1 0 0 2/5 1/5
0 1 0 1 −1/5 −3/5
0 0 1 −1 2/5 1/5


1 − 2

-

 1 0 0 −1 3/5 4/5
0 1 0 1 −1/5 −3/5
0 0 1 −1 2/5 1/5

 .

So

A−1 =

 −1 3/5 4/5
1 −1/5 −3/5
−1 2/5 1/5

 .



Proposition

For a square matrix A, the following statements are equivalent:

(1) A is singular, i.e., not invertible.

(2) A is not a product of elementary matrices.

(3) For a system Ax = b, “elimination breaks down permanently,”
i.e., the system does not have a unique solution. (It has no
solution or infinitely many, depending on the choice of b.)

(4) The rows of A are dependent.

(5) The columns of A are dependent.

(6) det(A) = 0 — but we haven’t defined determinant except for
2×2 matrices, so we’ll set this one aside for now.



(1) =⇒ (2) (or its equivalent, not (2) =⇒ not (1)): Each
elementary matrix has an inverse, so the product of elementary
matrices has an inverse, namely, the product of their inverses in
reverse order.

(2) =⇒ (1) (or its equivalent, not (1) =⇒ not (2)): If A has an
inverse, then Gauss-Jordan reduction will find it as a product of
elementary matrices; so A is the product of the inverses of those
elementary matrices in reverse order.



(2) =⇒ (3): If A is not the product of elementary matrices, then
row operations on it will never reach the identity. So it must reach
a row in which it is impossible to find a nonzero pivot, even by
reversing rows from below. So there is a column without a nonzero
pivot; and because the matrix is square, that means there is a row
of zeros and hence no unique solution to a system Ax = 0.

(3) =⇒ (1) (or its equivalent, not (1) =⇒ not (3)): If A is
invertible, then the unique solution to any Ax = b is x = A−1b.



(3) =⇒ (4): The row operations of elimination lead to a row of
0’s, so some row is a linear combination of the rows above it.

(4) =⇒ (3): There are row operations that lead to a row of 0’s,
and that new system E1E2 . . .EnAx = 0 has infinitely many
solutions. But row operations don’t change solutions, so Ax = 0
also has infinitely many solutions.



(3) =⇒ (5): (0, 0, . . . , 0) is always a solution to Ax = 0, so in
saying that the solution isn’t unique, we are assuming that we can
find a nonzero solution x = c to it. Let aj denote the j-th column
of A, and suppose cn 6= 0. Then we have

c1a1 + · · ·+ cnan = 0 =⇒ −c1
cn

a1 − · · · −
cn−1

cn
an−1 = an ,

so the columns of A are dependent.

(5) =⇒ (3): If the columns of A are dependent, say

c1a1 + · · ·+ cn−1an−1 = an ,

then x = (c1, . . . , cn−1,−1) is a nonzero solution to Ax = 0. But
x = (0, 0, . . . , 0) is always a solution to it, so the solution isn’t
unique.


