The problem:

Two systems differing only in constant terms:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The solution:

Solve them both at once — the operations depend only on the coefficient matrix:

$$\begin{bmatrix} 1 & 1 & -1 & 2 & 1 \\ 2 & 3 & 1 & 11 & 6 \\ 1 & -1 & -2 & -2 & -2 \end{bmatrix}$$

$$\xrightarrow{2 - 21}$$

$$\xrightarrow{3 - 1} \begin{bmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & 3 & 7 & 4 \\ 0 & -2 & -1 & -4 & -3 \end{bmatrix}$$

$$\xrightarrow{3 + 22} \begin{bmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & 3 & 7 & 4 \\ 0 & 0 & 5 & 10 & 5 \end{bmatrix}$$

$$\xrightarrow{3 \times 1/5} \begin{bmatrix} 1 & 1 & -1 & 2 & 1 \\ 0 & 1 & 3 & 7 & 4 \\ 0 & 0 & 5 & 10 & 5 \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(continued)

We've continued the elimination process until the coefficient matrix is the identity matrix, so we can just read off the solutions to the two systems:

$$\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \text{ and } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \text{ respectively.}$$

Definition

Gauss-Jordan reduction: The use of elementary row operations on a matrix to get it into "reduced row echelon form": The first nonzero entry in any row is a 1 (called a "leading 1"); each leading 1 is to the right of the one above it; the entries above the leading 1's are 0's; and any rows of all 0's come last.

Example

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 5 & 7 \\ 0 & 1 & 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 0 & 4 & 3 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The problem:

To find the inverse of

$$A = \left[\begin{array}{rrrr} 1 & 1 & -1 \\ 2 & 3 & 1 \\ 1 & -1 & -2 \end{array} \right] :$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The solution:

Solve three systems at once, with columns of constants the columns of I_3 :

$$\begin{bmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 2 & 3 & 1 & 0 & 1 & 0 \\ 1 & -1 & -2 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{2 - 21} \begin{bmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & -2 & -1 & -1 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{3 + 22} \begin{bmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 5 & -5 & 2 & 1 \end{bmatrix}$$

$$\xrightarrow{3 \times 1/5} \begin{bmatrix} 1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 1 & -1 & 2/5 & 1/5 \end{bmatrix}$$

(continued)

•

•

So

$$A^{-1} = \left[\begin{array}{rrr} -1 & 3/5 & 4/5 \\ 1 & -1/5 & -3/5 \\ -1 & 2/5 & 1/5 \end{array} \right]$$

Proposition

For a square matrix A, the following statements are equivalent:

- (1) A is singular, i.e., not invertible.
- (2) A is not a product of elementary matrices.
- (3) For a system Ax = b, "elimination breaks down permanently," i.e., the system does not have a unique solution. (It has no solution or infinitely many, depending on the choice of b.)
- (4) The rows of A are dependent.
- (5) The columns of A are dependent.
- (6) det(A) = 0 but we haven't defined determinant except for 2×2 matrices, so we'll set this one aside for now.

(1) \implies (2) (or its equivalent, not (2) \implies not (1)): Each elementary matrix has an inverse, so the product of elementary matrices has an inverse, namely, the product of their inverses in reverse order.

(2) \implies (1) (or its equivalent, not (1) \implies not (2)): If A has an inverse, then Gauss-Jordan reduction will find it as a product of elementary matrices; so A is the product of the inverses of those elementary matrices in reverse order.

(2) \implies (3): If A is not the product of elementary matrices, then row operations on it will never reach the identity. So it must reach a row in which it is impossible to find a nonzero pivot, even by reversing rows from below. So there is a column without a nonzero pivot; and because the matrix is square, that means there is a row of zeros and hence no unique solution to a system $A\mathbf{x} = \mathbf{0}$.

(3) \implies (1) (or its equivalent, not (1) \implies not (3)): If A is invertible, then the unique solution to any $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = A^{-1}\mathbf{b}$.

(3) \implies (4): The row operations of elimination lead to a row of 0's, so some row is a linear combination of the rows above it.

(4) \implies (3): There are row operations that lead to a row of 0's, and that new system $E_1E_2...E_nA\mathbf{x} = \mathbf{0}$ has infinitely many solutions. But row operations don't change solutions, so $A\mathbf{x} = \mathbf{0}$ also has infinitely many solutions.

(3) \implies (5): (0,0,...,0) is always a solution to $A\mathbf{x} = \mathbf{0}$, so in saying that the solution isn't unique, we are assuming that we can find a nonzero solution $\mathbf{x} = \mathbf{c}$ to it. Let \mathbf{a}_j denote the *j*-th column of *A*, and suppose $c_n \neq 0$. Then we have

$$c_1\mathbf{a}_1+\cdots+c_n\mathbf{a}_n=\mathbf{0} \implies -\frac{c_1}{c_n}\mathbf{a}_1-\cdots-\frac{c_{n-1}}{c_n}\mathbf{a}_{n-1}=\mathbf{a}_n$$

so the columns of A are dependent.

(5) \implies (3): If the columns of A are dependent, say

$$c_1\mathbf{a}_1+\cdots+c_{n-1}\mathbf{a}_{n-1}=\mathbf{a}_n$$
,

then $\mathbf{x} = (c_1, \dots, c_{n-1}, -1)$ is a nonzero solution to $A\mathbf{x} = \mathbf{0}$. But $\mathbf{x} = (0, 0, \dots, 0)$ is always a solution to it, so the solution isn't unique.