Complete solution for a non-homogeneous system

Recall the system $A\mathbf{x} = \mathbf{b}$:

$$A = \begin{bmatrix} 1 & 3 & 2 & 10 & -7 \\ 2 & 6 & 6 & 28 & -20 \\ 1 & 3 & 5 & 22 & -16 \end{bmatrix} \qquad \mathbf{b} = \begin{bmatrix} 5 \\ 4 \\ -4 \end{bmatrix}$$

with rref form $R\mathbf{x} = \mathbf{d}$:

$$R = \begin{bmatrix} 1 & 3 & 0 & 2 & -1 \\ 0 & 0 & 1 & 4 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{d} = \begin{bmatrix} 11 \\ -3 \\ 0 \end{bmatrix}$$

Strang writes the general solution to $A\mathbf{x} = \mathbf{b}$ as:

$$\mathbf{x} = \mathbf{x}_{p} + \mathbf{x}_{n}$$

$$= \begin{bmatrix} 11\\0\\-3\\0\\0\end{bmatrix} + y \begin{bmatrix} -3\\1\\0\\0\\0\end{bmatrix} + u \begin{bmatrix} -2\\0\\-4\\1\\0\end{bmatrix} + v \begin{bmatrix} 1\\0\\3\\0\\1\end{bmatrix}$$

What's going on here? All the solutions for $A\mathbf{x} = \mathbf{b}$ are one <u>particular</u> solution to the (non-homogeneous) system plus any solution to the homogeneous system $A\mathbf{x} = \mathbf{0}$, and the latter can be built out of the "special solutions" for the free variables:

$$\begin{bmatrix} 1 & 3 & 0 & 2 & -1 & | & 11 \\ 0 & 0 & 1 & 4 & -3 & | & -3 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$

to: $A\mathbf{x} = \mathbf{b} \quad A\mathbf{x} = \mathbf{0} \quad A\mathbf{x} = \mathbf{0} \quad A\mathbf{x} = \mathbf{0}$
 $y: \quad 0 \qquad 1 \qquad 0 \qquad 0$
 $u: \quad 0 \qquad 0 \qquad 1 \qquad 0$
 $v: \quad 0 \qquad 0 \qquad 0 \qquad 1$

Soln

=**0**

Proof that every solution to $A\mathbf{x} = \mathbf{b}$ is a particular one plus a solution to $A\mathbf{x} = \mathbf{0}$:

If $\mathbf{x}_1, \mathbf{x}_2$ are both solutions, then

$$A(\mathbf{x}_2 - \mathbf{x}_1) = A\mathbf{x}_2 - A\mathbf{x}_1 = \mathbf{b} - \mathbf{b} = \mathbf{0} ,$$

so $\mathbf{x}_2 - \mathbf{x}_1 \in \mathbf{N}(A)$ and

$$\mathbf{x}_2 = \mathbf{x}_1 + (\mathbf{x}_2 - \mathbf{x}_1)$$
.

Vector space proof of Rank+Nullity

Let T be a linear transformation from one fin dim vector space, V, to another, W. Let $r = \dim(T(V))$ and $k = \dim(N(T))$. Need to show $r + k = \dim(V)$.

Take bases $T(v_1), \ldots, T(v_r)$ of T(V) (where $v_i \in V$) and u_1, \ldots, u_k of N(T). Claim $B = \{v_1, \ldots, v_r, u_1, \ldots, u_k\}$ is a basis for V, which will finish the proof.

Lin ind: Suppose

$$c_1v_1 + \cdots + c_rv_r + d_1u_1 + \cdots + d_ku_k = 0_V$$
.

Apply T to both sides:

$$c_1 T(v_1) + \dots + c_r T(v_r) + d_1 T(u_1) + \dots + d_k T(u_k) = T(0_V)$$

$$c_1 T(v_1) + \dots + c_r T(v_r) = 0_W .$$

Because $T(v_i)$'s are lin ind, c_i 's are all 0. So

$$d_1u_1+\cdots+d_ku_k=0_V$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Because u_i 's are lin ind, d_i 's are also 0.

Span V: Take any v in V. Then T(v) is in span of $T(v_1), \ldots, T(v_r)$, say

$$T(v) = c_1 T(v_1) + \cdots + c_r T(v_r) .$$

Now

$$T(v - (c_1v_1 + \dots + c_rv_r)) = 0_W ,$$

so $v - (c_1v_1 + \dots + c_rv_r) \in N(T)$, so for some d_i 's,
 $v - (c_1v_1 + \dots + c_rv_r) = d_1u_1 + \dots + d_ku_k ,$

i.e.,

$$v=c_1v_1+\cdots+c_rv_r+d_1u_1+\cdots+d_ku_k.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

So B spans V. QED

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Challenge: Find a matrix with $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ and $\begin{bmatrix} 4\\5\\6 \end{bmatrix}$ in the column space and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ in the nullspace. **Answer:** Impossible. The nullspace vectors are in \mathbb{R}^3 , so n = 3. The column space vectors are lin ind, as are the nullspace vectors, so $r \ge 2$ and $n - r \ge 2$. This cannot be!

Challenge: Find a matrix with
$$\begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
 and $\begin{bmatrix} 4\\5\\6 \end{bmatrix}$ in the column space and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in the nullspace.

Answer: Now we can do it. Let's use the column vectors as the first 2 columns, and build the 3rd column to make the nullspace vector work: 3rd column entry = negative of 1st and 2nd column entries:

$$\left[\begin{array}{rrrr} 1 & 4 & -5 \\ 2 & 5 & -7 \\ 3 & 6 & -9 \end{array}\right]$$

Note 3rd is in the span of the first two. The rank must only be 2, because the nullspace has dimension at least 1.

The Other Two Subspaces

Definition

Let A be an $m \times n$ matrix. Then the row space of A is $\mathbf{R}(A) = \mathbf{C}(A^T)$, a subspace of \mathbb{R}^n ; and the *left nullspace* of A is $\mathbf{N}(A^T)$, a subspace of \mathbb{R}^m .

Suppose rank(A) = r:

- dim($\mathbf{C}(A)$) = r
- dim $(\mathbf{N}(A)) = n r$
- dim($\mathbf{R}(A)$) = dim($\mathbf{C}(A^T)$) = rank(A^T) = rank(A) = r

• dim
$$(\mathbf{N}(A^T)) = m - r$$

Orthogonal complement

Definition

Let S be a set of vectors in \mathbb{R}^n . Then the *orthogonal complement* of S, denoted S^{\perp} , is the set of all vectors that are orthogonal (perpendicular) to every vector in S.

You can check that:

- S^{\perp} is a subspace of \mathbb{R}^n (even if S isn't).
- S and S^{\perp} have at most the zero vector in common.

Suppose S is a set of vectors in \mathbb{R}^n . Suppose we choose from S a basis for the span of S and use their transposes as the rows in an $r \times n$ matrix A - r because the rows are ind, so the number of rows is also the rank. Then $S^{\perp} = \mathbf{N}(A)$.

So dim
$$(S^{\perp}) = n - r$$
.
So dim $((S^{\perp})^{\perp}) = n - (n - r) = r$.
So $(S^{\perp})^{\perp}$ is the span of S — in fact, if S is a subspace, it is S .

We'll see shortly that, because the span of S and S^{\perp} have only the zero vector in common, every vector in \mathbb{R}^n is the sum of one from the span of S and one from S^{\perp} .

(日) (同) (三) (三) (三) (○) (○)

Orthogonalities in the four subspaces

Proposition Let A be a matrix. Then $\mathbf{N}(A^{\mathsf{T}}) = (\mathbf{C}(A))^{\perp}$.

Proof.

Suppose A is $m \times n$. For a vector **x** in \mathbb{R}^m , TFAE:

$$\mathbf{x} \in (\mathbf{C}(A))^{\perp} \iff \mathbf{x} \cdot (A\mathbf{y}) = 0 \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
$$\iff \mathbf{x}^{T} A \mathbf{y} = 0 \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
$$\iff (A^{T} \mathbf{x})^{T} \mathbf{y} = 0 \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
$$\iff (A^{T} \mathbf{x}) \cdot \mathbf{y} = 0 \text{ for all } \mathbf{y} \text{ in } \mathbb{R}^{n}$$
$$\iff A^{T} \mathbf{x} = \mathbf{0} \text{ in } \mathbb{R}^{n}$$
$$\iff \mathbf{x} \in \mathbf{N}(A^{T})$$

Corollary $(\mathbf{R}(A))^{\perp} = (\mathbf{C}(A^{T}))^{\perp} = \mathbf{N}(A).$

Proof. (1) Replace A with A^{T} in the proposition.

(2) To say that a vector is a solution to $A\mathbf{x} = \mathbf{0}$ is to say that it is orthogonal to all the rows of A.

Challenge: Find a matrix with $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 4\\5\\-6 \end{bmatrix}$ in the row space and $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in the nullspace. **Answer:** Impossible: The nullspace vector isn't orthogonal to the second row space vector.

Chagrined subchallenge: So what vectors <u>could</u> be in the nullspace?

Answer: Any solution to the homogeneous system

$$\left[\begin{array}{rrrrr} 1 & 2 & -3 & 0 \\ 4 & 5 & -6 & 0 \end{array}\right] \ .$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <