
Proposition

Let A be a matrix. Then N(ATA) = N(A).

Proof.
If Ax = 0, then of course ATAx = 0. Conversely, if ATAx = 0,
then

0 = x · (ATAx) = xTATAx = (Ax)TAx = (Ax) · (Ax) ,

so Ax = 0 also.

Corollary

If the columns of the matrix A are independent, then ATA is
invertible.



Projection onto a subspace

V subspace of Rm: For each b in Rm, want to find the orthogonal
projection p of b onto V , i.e., closest point of V to b.

Function b 7→ p is linear transformation, so there is an m ×m
matrix P for which Pb = p.

We know P takes points in V to themselves and points in V⊥ to
0. Now we can build a basis for Rm by combining a basis for V
and one for V⊥; if we can find a matrix that takes the ones in V
to themselves and the ones in V⊥ to 0, then it must be P.



So make a matrix A (m × n) out of the basis for V and another B
(m × (m − n)) out of the basis for V⊥. Then

[
A B

] AT

→
[
ATA On×(m−n)

] (ATA)−1

→
[
In On×(m−n)

]
A→
[
A Om×(m−n)

]
.

So A(ATA)−1AT = P.

Notation:

I e = b− p — orthogonal to V

I x̂ = (ATA)−1ATb — coefficients for writing p as a
combination of the columns of A.



Example

Find the orthogonal projection p of b = (2, 0, 3) onto the V with
basis (1, 1, 1) and (1, 0,−1), and find the projection matrix P, and
check e = b− p ⊥ V :

A =

 1 1
1 0
1 −1

 , (ATA)−1 =

[
3 0
0 2

]−1
=

[
1/3 0

0 1/2

]

P =

 1 1
1 0
1 −1

[ 1/3 0
0 1/2

] [
1 1 1
1 0 −1

]

=

 5/6 1/3 −1/6
1/3 1/3 1/3
−1/6 1/3 5/6

 ,



Example (ctnd)

p = Pb

=

 5/6 1/3 −1/6
1/3 1/3 1/3
−1/6 1/3 5/6

 2
0
3

 =

 7/6
5/3

13/6


AT (b− p) =

[
1 1 1
1 0 −1

] 5/6
−5/3

5/6


=

[
0
0

]



Special Case (silly)

A is invertible, i.e., V = Rm: The closest point in V to any b in
Rm is b itself, so p = b, P = I and x̂ = A−1b.



Special Case (not silly)

A is a single nonzero vector a, i.e., V is a line: Then ATA = a · a
is a nonzero number, so its inverse is just its reciprocal, and

P =
aaT

a · a
.

Moreover,

p =
aaT

a · a
b =

a(aTb)

a · a
=

a · b
a · a

a , so x̂ =
a · b
a · a

,

because in this case x̂ is a single number, the coefficient of a when
writing p.



Example

Find the projection p of b = (1, 2, 3) onto (the span of)
a = (1, 0,−1) and the corresponding x̂, and check that e = b− p
is orthogonal to a:

P =
1

1 + 0 + 1

 1
0
−1

 [ 1 0 −1
]

=

 1/2 0 −1/2
0 0 0

−1/2 0 1/2



p = P

 1
2
3

 =

 −1
0
1

 ,

x̂ =
a · b
a · a

=
1 + 0 + (−3)

1 + 0 + 1
= −1 , a · e =

 1
0
−1

 ·
 2

2
2

 = 0



Idempotent matrix

Any projection matrix P, onto the subspace V , say, multiplies all
the vectors in Rm into V , and if we multiply again by P, they
don’t change. Thus,

P2b = Pb for every b in Rm ,

Therefore, P2 = P. The term for a matrix that equals its own
square is idempotent.



Same problem, two forms: Form 1

The projection problem: Given vectors
(q1, q2, q3), (r1, r2, r3), (s1, s2, s3) in R3, find the point
(ŝ1, ŝ2, ŝ3) = g(q1, q2, q3) + h(r1, r2, r3) closest to (s1, s2, s3), i.e.,
minimizing

E = (s1 − ŝ1)2 + (s2 − ŝ2)2 + (s3 − ŝ3)2

= (s1 − (gq1 + hr1))2 + (s2 − (gq2 + hr2))2 + (s3 − (gq3 + hr3))2 .

In our earlier notation s = b, q and r are the columns of A, and we
seek ŝ = p and x̂ = (g , h).



Same problem, two forms: Form 2

The least squares problem: Given points
(q1, r1, s1), (q2, r2, s2), (q3, r3, s3) in R3, with s on the vertical axis,
find the subspace, given by the equation ŝ = gq + hr , that
minimizes the sum of the squares of the vertical distances from the
given points to the corresponding points on the subspace, i.e.,
minimizing

E = (s1 − ŝ1)2 + (s2 − ŝ2)2 + (s3 − ŝ3)2

= (s1 − (gq1 + hr1))2 + (s2 − (gq2 + hr2))2 + (s3 − (gq3 + hr3))2 .



They are both the same problem because they both come from the
same general setup: A linear system Ax = b with more equations
than variables (i.e., m > n), so there is no exact solution.

So we want the “best” solution, as measured by least squares.

And that comes from solving the square system ATAx = ATb
(multiply both sides by AT , to “kill” all the vectors perpendicular
to the columns of A, including the difference between b and its
projection p on the column space).

So the best approximate solution is

x̂ = (ATA)−1ATb ,

and p = Ax̂ is as close as you can get to b in the column space of
A.



Same question, answered by (multivariate) calculus: Why is the
solution to ATAx = ATb the best approximation to a solution to
Ax = b?

To find x-values x̂ that minimize

E = ||b− Ax||2 =
∑
i

(bi −
∑
j

aijxj)
2 ,

take partial derivatives with respect to xk ’s:

∂E

∂xk
=
∑
i

2(bi −
∑
j

aijxj)(−aik) ;

set all equal to 0 and simplify. Result is a system:∑
i

∑
j

aikaijxj =
∑
i

aikbi

which is ATAx = ATb.



The least squares problem comes from: Given data values with n
“input” (or “explanatory”, or “predictor”) variables x1, x2, . . . , xn
and one “output” (or “response”) variable y , find the coefficients
ci of the linear equation

ŷ = c1x1 + c2x2 + · · ·+ cnxn

that best approximates the data. So:

I the x-values of the data points become the constants, the
entries in the matrix X (which used to be A),

I the y -values of the data points become b,

I the c ’s become the coefficients for writing the approximation
ŷ for y in terms of x-values of the data points — in other
words, what x̂ used to be.



Example 1

Find the plane ŷ = cx1 + dx2 that is the least squares
approximation to the data points (0,1,4), (1,0,5), (1,1,8), (-1,2,7):

X =


0 1
1 0
1 1
−1 2

 , y =


4
5
8
7


(XTX )−1 =

[
3 −1
−1 6

]−1
= (1/17)

[
6 1
1 3

]
c = (XTX )−1XTy = (1/17)

[
6 1
1 3

] [
6

26

]
=

[
62/17
84/17

]
;

so the best approximation to these points is
ŷ = (62/17)x1 + (84/17)x2.



Example 2

Find the line ŷ = mx + b in R2 that is the least squares
approximation to (i.e., is the regression line for) the data points
(0,1), (1,2), (2,5), (3,6):

X =


0 1
1 1
2 1
3 1

 , y =


1
2
5
6


(XTX )−1 =

[
14 6

6 4

]−1
=

[
0.2 −0.3
−0.3 0.7

]
c = (XTX )−1XTy =

[
0.2 −0.3
−0.3 0.7

] [
42
24

]
=

[
1.8
0.8

]
;

so the best approximation to these points is ŷ = 1.8x + 0.8.



Example 3

The heights h in feet of a ball t seconds after it is thrown upward
are (0,0.2), (0.2,3.0), (0.4,5.3), (0.6,7.0), (0.8,7.5), (1.0,5.5). The
height should be related to the time by h = a + bt + ct2 where c is
negative. What are best approximations for the values of a, b, c ,
the initial height, initial velocity, and half the gravitational
constant respectively. Using R:

T =



1 0 0
1 0.2 0.04
1 0.4 0.16
1 0.6 0.36
1 0.8 0.64
1 1 1

 , h =



0.2
3.0
5.3
7.0
7.5
5.5





Example 3 (ctnd)

(TTT )−1 =

 0.8214286 −2.946429 2.232143
−2.9464286 18.169643 −16.741071

2.2321429 −16.741071 16.741071


 â

b̂
ĉ

 = (TTT )−1TTh =

 −0.08571429
19.88571429
−13.92857143


Apparently the ball was not thrown on Earth; it was thrown out of
a shallow hole on a smaller planet.



Orthonormal Bases

Vectors are orthonormal iff they are pairwise orthogonal and they
all have length 1.

If the columns of the matrix Q (traditionally that letter) and Q is
m × n where m ≥ n, then QTQ = In.

In particular, if Q is n × n — and still has orthonormal columns —
then Q is invertible with inverse its transpose; it is then called
orthogonal. (Why not “orthonormal”, I don’t know, and
apparently neither does Strang.)



What good is an orthonormal basis?

Suppose q1, . . . ,qn is an orthonormal basis for Rn . Then for any
vector v in Rn, suppose we have written v in terms of the q’s:

v = c1q1 + · · ·+ cnqn .

Then for each k from 1 to n:

qTk v = c1q
T
k q1 + · · ·+ cnq

T
k qn

= c1(0) + · · ·+ ck(1) + · · ·+ cn(0) = ck .

So we can find the coefficients to write v in terms of q1, . . . ,qn
just by taking dot products with the q’s.



We want to start with a basis a1, . . . , an for Rn and build a new
basis q1, . . . ,qn that consists of orthonormal vectors.

q1 = a1/||a1|| .

e2 = a2 −
qT1 a2
qT1 q1

q1 = a2 − (qT1 a2)q1 ,

so q2 = e2/||e2|| ;

e3 = a3 − (qT1 a3)q1 − (qT2 a3)q2 ,

so q3 = e3/||e3|| .

And so on.



And what is the process of going back from the q’s to the a’s?
Using the dot product fact that we noted earlier, we get

ak =
n∑

i=1

(qTi ak)qi .

If we write this in terms of matrices, we get[
a1 a2 . . . an

]
=
[
q1 q2 . . . qn

]


qT1 a1 qT1 a1 . . . qT1 a1
qT2 a1 qT2 a2 . . . qT2 an

...
...

. . .
...

qTn a1 qTn a2 . . . qTn an

 .



If we call A the matrix with columns the a’s, Q the matrix with
columns the q’s, and R the matrix of dot products, then A = QR.
Moreover, look at the entries qTi aj in the lower triangle of R, i.e.,
i > j . Then aj can be written as a combination of the q’s up to j ;
and qi is orthogonal to the earlier q’s, so it is orthogonal to aj . So
the lower triangle is all 0’s, i.e., R is upper triangular.



Example

The vector (1,−2, 2)/3 has length 1. We want to find an basis for
R3 that includes it, and then write the corresponding A as QR
where Q is orthogonal and R is upper triangular:

The given vector together with (0,1,0) and (0,0,1) is a basis for
R3, so we can use this basis

a1 = q1 =

 1/3
−2/3

2/3

 , a2 =

 0
1
0

 , a3 =

 0
0
1



A =

 1/3 0 0
−2/3 1 0

2/3 0 1

 .



Example (ctnd)

e2 = a2 − (qT1 a2)q1 =

 0
1
0

− (−2/3)

 1/3
−2/3

2/3

 =

 2/9
5/9
4/9

 ,

q2 =

 2/
√

45

5/
√

45

4/
√

45


and . . .



Example (ctnd again)

e3 = a3 − (qT1 a3)q1 − (qT2 a3)q2

=

 0
0
1

− (2/3)

 1/3
−2/3

2/3

− (4/
√

45)

 2/
√

45

5/
√

45

4/
√

45


=

 −2/5
0

1/5

 ,

q3 =

 −2/
√

5
0

1/
√

5





Example (ctnd yet again)

We could check that the q’s are pairwise orthogonal and each have
length 1. We get A = QR where

A =

 1/3 0 0
−2/3 1 0

2/3 0 1

 , Q =

 1/3 2/
√

45 −2/
√

5

−2/3 5/
√

45 0

2/3 4/
√

45 1/
√

5

 ,

R =

 1 −2/3 2/3

0 5/
√

45 4/
√

45

0 0 1/
√

5

 .




