
Determinants:
for square matrices only



Solve a general system (2×2)

ax + by = f

cx + dy = g

2 − c
a 1

-

ax + by = f(
d − bc

a

)
y = g − fc

a(
ad − bc

a

)
y =

ag − fc

a

2 × a
ad−bc

-
ax + by = f

y =
ag − fc

ad − bc



Solve a general system (2×2, ctnd.)

1 − b 2
-

ax = f − b
ag − fc

ad − bc

=
fad − fbc − bag + bfc

ad − bc
= a

fd − bg

ad − bc

y =
ag − fc

ad − bc

1 × 1
a
-

x =
fd − bg

ad − bc

y =
ag − fc

ad − bc



The value ad − bc came up in the denominator — and we saw
earlier that the system has a solution exactly when ad − bc. It
determines when a solution exists.

Definition

The determinant of A =

[
a b
c d

]
is ad − bc, denoted either

detA or |A|.

Note: From the general system above:

x =
fd − bg

ad − bc
=

det

[
f b
g d

]
det

[
a b
c d

] y =
ag − fc

ad − bc
=

det

[
a f
c g

]
det

[
a b
c d

]



Solve a general system (3×3)

a1x + b1y + c1z = p

a2x + b2y + c2z = q

a3x + b3y + c3z = r

2 − a2
a1

1

3 − a3
a1

1
-

a1x + b1y + c1z = p

a1b2 − a2b1
a1

y +
a1c2 − a2c1

a1
z =

a1q − a2p

a1
a1b3 − a3b1

a1
y +

a1c3 − a3c1
a1

z =
a1r − a3p

a1

3 − a1b3−a3b1
a1b2−a2b1 2

-



→

a1x + b1y + c1z = p

a1b2 − a2b1
a1

y +
a1c2 − a2c1

a1
z =

a1q − a2p

a1

a1b2c3 − a2b1c3 − a3b2c1 − a1b3c2 + a2b3c1 + a3b1c2
a1b2 − a2b1

z

=
a1b2r − a2b1r − a3b2p − a1b3q + a2b3p + a3b1q

a1b2 − a2p

ETC.



So:

Definition

If A =

 a1 b1 c1
a2 b2 c2
a3 b3 c3

, then

detA = a1b2c3 − a2b1c3 − a3b2c1 − a1b3c2 + a2b3c1 + a3b1c2 .

And then we get from the general system above:

z =

det

 a1 b1 p
a2 b2 q
a3 b3 r


det

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 .



A a square matrix → detA or |A|, a number built out of the
entries of A

Basic Properties

1. det(In) = 1 (for any n)

2. Reversing two rows changes sign.

3. Det is “multilinear”, i.e., linear in each row separately. [So, for
example, ∣∣∣∣∣∣

1 2 3
4 5 6

2(2) + 3(4) 2(−1) + 3(7) 2(3) + 3(2)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
1 2 3
4 5 6
2 −1 3

∣∣∣∣∣∣+ 3

∣∣∣∣∣∣
1 2 3
4 5 6
4 7 2

∣∣∣∣∣∣ .]
Warning: By 3., det(cA) = cn detA (not c detA), if A is n × n.



Secondary Properties

4. If two rows are equal, det = 0.
I Pf: Reversing two rows changes the sign but, if the rows are

equal, the matrix is the same. Only d = 0 satisfies −d = d .

5. Subtracting a scalar multiple of one row from another doesn’t
change det.

I Pf:∣∣∣∣∣∣∣∣∣∣∣∣∣

...
ak

...
aj + cak

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
ak

...
aj

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
+c

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
ak

...
ak

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
ak

...
aj

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
+c(0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

...
ak

...
aj + cak

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

6. If A has a row of 0’s, detA = 0.
I Pf: If ak = 0 = 0ak , then detA = 0(detA) = 0.



Secondary Properties (ctnd.)

7. If A is triangular, detA is the product of its main diagonal
entries.

I Pf: If a main diagonal entry is 0, then by row ops we can make
a row of zeros, so det is 0. If not, we can make it diagonal and
use multilinearity to turn it into I .

8. detA = 0 iff A is singular (= not invertible).
I Pf: A is singular iff its rref R has 0 on its diagonal; but

detA = k detR where k 6= 0.

9*. det(AB) = (detA)(detB).
I Pf: If A or B is singular, both sides are 0. If neither, A is a

product of elementary matrices, and we can check
det(EB) = (detE )(detB) for each of the 3 kinds of E .

91
2 . det(A−1) = 1/(detA).

I Pf: (detA)(detA−1) = det I .



Secondary Properties (ctnd. again)

10. det(AT ) = detA.
I Pf: If A is singular, so is AT . If not, A is a product of

elementaries E , and detE = detET for each kind of E . (For
two of them, E = ET . For the third, detE = 1 = detET .) So
if A = E1E2E3, then

detAT = (detET
3 )(detET

2 )(detET
1 )

= (detE3)(detE2)(detE1)

= (detE1)(detE2)(detE3) (mult of scalars is comm)

= detA .



Claims:

I The Basic Properties imply the “Big Formula” for
determinants that we’ll do soon.

I Because the Big Formula gives the determinant, it follows
that any rule that has the Basic Properties is the determinant.

Check that

∣∣∣∣ a b
c d

∣∣∣∣ = ad − bc has the Basic Properties.



Evaluating determinants I: Pivots

Do row ops to get a diagonal matrix, keeping track of how
determinant changes.
Example:∣∣∣∣∣∣

0 3 5
2 0 4
1 1 1

∣∣∣∣∣∣ 1 ↔ 2
= −

∣∣∣∣∣∣
2 0 4
0 3 5
1 1 1

∣∣∣∣∣∣ 1 ×(1/2)
= −2

∣∣∣∣∣∣
1 0 2
0 3 5
1 1 1

∣∣∣∣∣∣
3 − 1

= −2

∣∣∣∣∣∣
1 0 2
0 3 5
0 1 −1

∣∣∣∣∣∣ 3 −(1/3) 2
= −2

∣∣∣∣∣∣
1 0 2
0 3 5
0 0 −8/3

∣∣∣∣∣∣
= −2(1)(3)(−8/3) = 16

This is the most efficient method, i.e., fewest arithmetic operations.

Note also, from PA = LU and |P| = ±1 and |L| = 1, we get that
|A| is plus or minus the product of the pivots of A.



Evaluating determinants II: The Big Formula

Recall:

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣
= a11a22 − a12a21

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33

+ a12a23a31 + a13a21a32 − a13a22a31

Note in each term the first subscript goes from 1 to n, and the
second varies over a rearrangement of 1 to n, with all the
rearrangements in different terms (i.e., each term is a product of
entries, one from each row and one from each column). We need
the signs of the terms.



In the same way, from solving bigger systems:

detA =
∑
σ

(sgnσ)
n∏

i=1

ai ,σ(i)

where σ varies over all the permutations (rearrangements) of
1,2,. . . , n and sgnσ is −1 to the power the number of backward
pairs in σ.
A “backward pair” is a pair from 1 through n that is out of its
usual order in σ.
Example: If σ is 41325, then of the ten pairs

1, 2 1, 3 1, 4 1, 5 2, 3 2, 4 2, 5 3, 4 3, 5 4, 5

1,4 and 2,3 and 2,4 and 3,4 are backwards in σ, so
sgnσ = (−1)4 = 1.



Because there are n(n − 1)(n − 2) . . . (2)(1) = n! permutations of
1 through n, using the Big Formula, a determinant has n! terms of
products of n entries.

So a 10× 10 matrix requires

10!(9) = 32, 659, 200

arithmetic operations, even without trying to figure out the sgn for
each term.



Example

1234 1
1243 −1
1324 −1
1342 1
1423 1
1432 −1
2134 −1
2143 1
2314 1
2341 −1
2413 −1
2431 1
3124 1
3142 −1
3214 −1
3241 1
3412 1
3421 −1
4123 −1
4132 1
4213 1
4231 −1
4312 −1
4321 1

∣∣∣∣∣∣∣∣
0 1 2 3
1 −1 2 0
2 1 0 5
0 1 4 3

∣∣∣∣∣∣∣∣
= 0− 0− 0 + 0 + 0− 0

− 1(1)(0)(3) + 1(1)(5)(4) + 1(2)(2)(3)

− 1(2)(5)(0)− 1(0)(2)(4) + 1(0)(0)(0)

+ 2(1)(1)(3)− 2(1)(5)(1)− 2(−1)(2)(3)

+ 2(−1)(5)(0) + 2(0)(2)(1)− 2(0)(1)(0)

− 3(1)(1)(4) + 3(1)(0)(1) + 3(−1)(2)(4)

− 3(−1)(0)(0)− 3(2)(2)(1) + 3(2)(1)(0)

= 20 + 12 + 6− 10− (−12)− 12 + (−24)− 12

= −8



Evaluating determinants III: Cofactors

The only way to keep the Big Formula straight:

Definition
The (i , j)-th cofactor of the matrix A is (−1)i+j times the
determinant of the (n − 1)× (n − 1) matrix that results from
deleting from A the i-th row and the j-th column.

detA =
∑
i

ai ,jCi ,j for any i

=
∑
j

ai ,jCi ,j for any j



Example:∣∣∣∣∣∣∣∣
0 1 2 3
1 −1 2 0
2 1 0 5
0 1 4 3

∣∣∣∣∣∣∣∣
= 0 + 1(−1)

∣∣∣∣∣∣
1 2 3
1 0 5
1 4 3

∣∣∣∣∣∣+ 2(1)

∣∣∣∣∣∣
1 2 3
−1 2 0

1 4 3

∣∣∣∣∣∣+ 0

= −
[

1(−1)

∣∣∣∣ 2 3
4 3

∣∣∣∣+ 0 + 5(−1)

∣∣∣∣ 1 2
1 4

∣∣∣∣]
+ 2

[
−1(−1)

∣∣∣∣ 2 3
4 3

∣∣∣∣+ 2(1)

∣∣∣∣ 1 3
1 3

∣∣∣∣+ 0

]
= −[−(−6)− 5(2)] + 2[1(−6) + 2(0)] = −8



Cramer’s Rule

As we saw earlier, we can solve Ax = b (for A nonsingular) by
letting Bi be the result of replacing the i-th column of A (the
coefficients of xi ) with b and setting

xi =
detBi

detA
for each i .

Why does this work? Well, by the multilinearity on columns and
the fact that a matrix with two equal columns has determinant 0:

|Bi | =
∣∣ a1 . . . b . . . an

∣∣
=
∣∣ a1 . . . (x1a1 + · · ·+ xnan) . . . an

∣∣
= x1

∣∣ a1 . . . a1 . . . an
∣∣

+ · · ·+ xi
∣∣ a1 . . . ai . . . an

∣∣
+ · · ·+ xn

∣∣ a1 . . . an . . . an
∣∣

= 0 + · · ·+ xi |A|+ · · ·+ 0 = xi |A| .



Example

3y + 2z = 7
x − 2y + z = 12

3x + 4y = −6∣∣∣∣∣∣
0 3 2
1 −2 1
3 4 0

∣∣∣∣∣∣ = 0− 3(0− 3) + 2(4− (−6)) = 29 :

x =

∣∣∣∣∣∣
7 3 2

12 −2 1
6 4 0

∣∣∣∣∣∣
29

=
110

29
, y =

∣∣∣∣∣∣
0 7 2
1 12 1
3 6 0

∣∣∣∣∣∣
29

=
−39

29
,

z =

∣∣∣∣∣∣
0 3 7
1 −2 12
3 4 6

∣∣∣∣∣∣
29

=
160

29
.



Inverses via the “classical adjoint”

To find the columns of A−1, we need to solve the n systems

Ax1 = e1 , . . . , Axn = en

where the e’s are the columns of the identity matrix. Suppose we
solve them each by Cramer’s rule, evaluating each |B| by cofactors
down the e column. Then, for example, to find the (1, n)-th entry
in A−1, we replace the first column in A with en and evaluate the
determinant of the result down the first column — which gives the
cofactor Cn1 of A — and divide by |A|. In general,

A−1 = (1/|A|)

 C11 . . . Cn1
...

. . .
...

C1n . . . Cnn

 .

Note this is the transpose of the obvious matrix of cofactors.



Determinants are signed areas

1.

∣∣∣∣ a b
c d

∣∣∣∣ is the area of the parallelogram with vertices (0,0),

(a, c), (b, d) and (a + b, c + d), with sign determined by whether
(b, d) is counterclockwise or clockwise from (a, c).

2.

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ is the volume of the parallelopiped from (0,0,0)

determined by the columns, with sign determined by whether the
columns give a right-handed system.

Why? Well, signed area has the three Basic Properties (the third is
the hard one to see), so it is the determinant function.



Determinants are signed areas

1.

∣∣∣∣ a b
c d

∣∣∣∣ is the area of the parallelogram with vertices (0,0),

(a, c), (b, d) and (a + b, c + d), with sign determined by whether
(b, d) is counterclockwise or clockwise from (a, c).

2.

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ is the volume of the parallelopiped from (0,0,0)

determined by the columns, with sign determined by whether the
columns give a right-handed system.

Why? Well, signed area has the three Basic Properties (the third is
the hard one to see), so it is the determinant function.



Area of a triangle not at (0,0)

Area A of triangle with vertices (a, b), (c , d), (e, f ) is half the

absolute value of

∣∣∣∣∣∣
a b 1
c d 1
e f 1

∣∣∣∣∣∣.
Why? Volume of parallelopiped with these vertices in plane x3 = 1
(call those points A,C ,E ) is that determinant.



But it is also sum of areas of:

I the upside-down pyramid with vertex (0,0,0) and base triangle
A,C ,E ,

I four tetrahedra that assemble to give the piece between x3 = 1 and
x3 = 2; and

I the pyramid from triangle A + C ,A + E ,C + E in x3 = 2 to vertex
A + C + E in x3 = 3.

All 6 have same volume (4 clear, 2 harder).



So

det = volume = 6(
1

3
A) =⇒ A =

1

2
det .

Example: The area of the triangle with vertices (1,2), (2,5),
(−2, 3) is

1

2

∣∣∣∣∣∣det

 1 2 1
2 5 1
−2 3 1

∣∣∣∣∣∣ = 5 .



If a region R in the plane has area A and the plane is transformed
by multiplication by a matrix A, then each one of the unit squares
in the plane is converted to a parallelogram with area |A|, so the
area of the the transformed region A(R) is A|A|.



Change of variable, one variable

If we set t = 1 + x2, then the values of the functions 1/
√
t and

1/
√

1 + x2 agree at corresponding values:

but clearly ∫ 2

0

1√
1 + x2

dx 6=
∫ 5

1

1√
t
dt .



Change of variable, one variable, ctnd.

To get the correct equality for inte-
grals, we need to adjust the — ul-
timately infinitesimal – widths of the
rectangles, and that adjustment has to
vary with the x and t values.

The equation dt = 2x dx gives the (varying) horizontal adjustment
in the widths from the x-line to the t-line:∫ 2

0

2x√
1 + x2

dx =

∫ 5

1

1√
t
dt .



Change of variable, two variables
So how do we make a similar change of variable in multivariate
integral? ∫ 1

−1

∫ √1−x2
−
√
1−x2

1√
x2 + y2

dy dx =?

The change of variable

[
x
y

]
=

[
r cos θ
r sin θ

]
simplifies the

integrand to 1/r . But what about the varying change of
(infinitesimal) area (in place of length) from dr dθ in the rθ-plane
to dy dx in the xy -plane:



Change of variable, two variables, ctnd.

That change is done with the determinant of the matrix of partial
derivatives, the Jacobian, which is the factor that the area of an
infinitesimal square in the rθ plane changes by as it becomes an
infinitesimal parallelogram in the xy plane:∣∣∣∣ ∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

∣∣∣∣ =

∣∣∣∣ cos θ −r sin θ
sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r .

∫ 1

−1

∫ √1−x2
−
√
1−x2

1√
x2 + y2

dy dx =

∫ π

−π

∫ 1

0

1

r
r dr dθ = 2π .

In general, if the change of variable is (x , y) = f(u, v),

rectangle parallelogram

du

[
1
0

]
, dv

[
0
1

]
→ du

[
∂x/∂u
∂y/∂u

]
, dv

[
∂x/∂v
∂y/∂v

]
and the area changes from du dv to J(f)du dv .


