
Example (from last time)

A =

 −7 1 0
1 −3 2
0 2 −7

 :

∣∣∣∣∣∣
−7− λ 1 0

1 −3− λ 2
0 2 −7− λ

∣∣∣∣∣∣
= (−7− λ)2(−3− λ) + 0 + 0− 0− 4(−7− λ)− 1(−7− λ)

= (−7− λ)[21 + 10λ+ λ2 − 5] = (−7− λ)(λ2 + 10λ+ 16)

= (−7− λ)(λ+ 2)(λ+ 8)

= 0 when λ = −7,−2,−8



Example (continued)

A =

 −7 1 0
1 −3 2
0 2 −7

 :

λ = −7 :

 0 1 0
1 4 2
0 2 0

 →
 1 0 2

0 1 0
0 0 0

 :

 −2
0
1


λ = −2 :

 −5 1 0
1 −1 2
0 2 −5

 →
 1 0 −1/2

0 1 −5/2
0 0 0

 :

 1/2
5/2

1


λ = −8 :

 1 1 0
1 5 2
0 2 1

 →
 1 0 −1/2

0 1 1/2
0 0 0

 :

 1/2
−1/2

1





Proposition

If v1, v2, . . . , vk are eigvecs of A corresponding to different eigvals
λ1, λ2, . . . , λk , then v1, v2, . . . , vk are lin ind.

Proof.
As an eigvec, v1 6= 0. WLOG, vk is the first one that is in span of
earlier ones, say vk = c1v1 + · · ·+ ck−1vk−1. Multiply by A,
multiply by λk and take difference:

0 =
k−1∑
i=1

ci (λi − λk)vi .

All (λi − λk)’s are nonzero and some ci is nonzero, say ck−1, so

vk−1 =
k−2∑
i=1

− ci (λi − λk)

ck−1(λk−1 − λk)
vi ,

contradicting our choice of vk .



Example (resumed)

So as eigvecs corresponding to different eigvals, −2
0
1

 ,
 1/2

5/2
1

 ,
 1/2
−1/2

1



are lin ind, and S =

 −2 1/2 1/2
0 5/2 −1/2
1 1 1

 is invertible.



Trace of a square matrix

The sum of the main diagonal entries of a square matrix is the
trace. We have trace(A + B) = trace A + trace B, but NOT
trace(AB) = (trace A)(trace B).

Who cares? Well, it provides a check on the eigenvalues:

det A = product of the eigvals of A

trace A = sum of the eigvals of A



Verifying the last claim

Consider characteristic polynomial∣∣∣∣∣∣∣∣∣
a11 − λ a12 . . . a1n

a21 a22 − λ . . . a2n
...

...
. . .

...
an1 an2 . . . ann − λ

∣∣∣∣∣∣∣∣∣ = (λ1−λ)(λ2−λ) . . . (λn−λ)

where λi ’s are the eigvals.

Constant term, when λ = 0, is |A|, but it is also product of λi ’s.

Coefficient of λn−1 is (−1)n−1 times the sum of the λi ’s, but also:

The only term in the Big Formula that has λn−1 in it is from the
main diagonal — the rest have at least 2 factors of constants. And
the coefficient of λn−1 in (a11 − λ)(a22 − λ) . . . (ann − λ) is
(−1)n−1 times the sum of the aii ’s, i.e., the trace.



Example again

A =

 −7 1 0
1 −3 2
0 2 −7

, eigvals −7,−2,−8:

trace A = −7 + (−3) +−7 = −7 +−2 +−8

det A = (−7)2(−3) + 0 + 0− 0− 4(−7)− 1(−7)

= −112 = (−7)(−2)(−8)



Surprise!

Because now we are trying to solve some polynomials (in λ) that
are not linear, some roots may not be real:

Example

C =

[
5 7
−3 −4

]
:

∣∣∣∣ 5− λ 7
−3 −4− λ

∣∣∣∣ = (5− λ)(−4− λ) + 21

= 1− λ+ λ2

= 0 when λ =
1±
√

1− 4

2

=
1± i

√
3

2



The set C of complex numbers is also a field, so we can start
taking “scalars” from there.

The best part is, a polynomial with coefficients from C has all its
roots in C, and we can always factor it into linear factors.



Continuing example

λ =
1 + i

√
3

2
:

[
9−i
√
3

2 7

−3 −9−i
√
3

2

]
→

[
1 14

9−i
√
3

0 0

]
.

Note
14

9− i
√

3
=

14(9 + i
√

3)

81 + 3
=

9 + i
√

3

6
,

so a corr eigvec is

[
−9+i

√
3

6
1

]
.

An eigvec corr to λ = 1−i
√
3

2 must be

[
−9−i

√
3

6
1

]
— take

complex conjugates everywhere.



New World Order

Just as we can picture real scalars as points on a line, we can think
of complex scalars as points on a plane: x + iy corresponds to the
point (x , y). Complex numbers add like vectors, as usual. But
multiplication is handier if we write complex numbers in “polar
form”: r(cos θ + i sin θ), where r is the distance from the origin
and θ is the angle with the positive real axis. (By a coincidence of
Maclaurin series, we can abbreviate this to re iθ.)

r(cos θ + i sin θ)s(cosϕ+ i sinϕ)

= rs[(cos θ cosϕ− sin θ sinϕ) + i(cosθ sinϕ+ sin θ cosϕ)]

= rs[cos(θ + ϕ) + i sin(θ + ϕ)]

Thus, to multiply two complex numbers, multiply their distances
from the origin and add their angles from the positive real axis.
(This looks even easier in exponential notation:
(re iθ)(se iϕ) = (rs)e i(θ+ϕ).)



Roots of Unity
Thus, in C, there are roots of unity spaced evenly around the unit
circle: ωn

n = 1



Any point on the unit circle in the complex plane is cos θ + i sin θ,
where θ is the angle to the positive real axis. So:

ω2 = cosπ + i sinπ = −1

ω4 = cos(π/2) + i sin(π/2) = i

ω2
4 = cosπ + i sinπ = ω2 = −1 ω3

4 = −i

ω3 = cos(2π/3) + i sin(2π/3) = −1

2
+ i

√
3

2

ω2
3 = cos(4π/3) + i sin(4π/3) = −1

2
− i

√
3

2

ω6 = cos(π/3) + i sin(π/3) =
1

2
+ i

√
3

2
ω2
6 = ω3 ω3

6 = ω2 = −1

ω8 = cos(π/4) + i sin(π/4) =

√
2

2
+ i

√
2

2

There are corresponding ωk
n for all n, k , but the sines and cosines

aren’t nice. (Well, ω5 isn’t too bad.)



Eigstuff → Diagonalization

Theorem
Suppose the n × n matrix A has n lin ind eigvecs v1, v2, . . . , vn,
with corr eigvals λ1, λ2, . . . , λn respectively. Form the matrix S
with cols the vi ’s in order, and the diagonal matrix Λ with main
diagonal entries the λi ’s in order. Then A = SΛS−1.

Proof.
First, S is invertible. We show S−1AS = Λ, one column at a time:
First column of S is v1, and Av1 = λ1v1, and

S−1λ1v1 = λ1(first column of I) =


λ1

0
...
0

 = first column of Λ .

Similarly for the other columns.



Therefore,

A =

 −7 1 0
1 −3 2
0 2 −7


=

 −2 1/2 1/2
0 5/2 −1/2
1 1 1

 −7 0 0
0 −2 0
0 0 −8

 −2 1/2 1/2
0 5/2 −1/2
1 1 1

−1

C =

[
5 7
−3 −4

]

=

[
−9+i

√
3

6 −9−i
√
3

6
1 1

][
1+i
√
3

2 0

0 1−i
√
3

2

][
−9+i

√
3

6 −9−i
√
3

6
1 1

]−1



First Application of Eigstuff

Powers of diagonal matrices are easy: −7 0 0
0 −2 0
0 0 −8

4

=

 (−7)4 0 0
0 (−2)4 0
0 0 (−8)4


So if we can diagonalize a matrix, then we can find its powers
easily:

A = SΛS−1, so

A4 = (SΛS−1)(SΛS−1)(SΛS−1)(SΛS−1) = SΛ4S−1 .



Example 1

 −7 1 0
1 −3 2
0 2 −7

4

=

 −2 1/2 1/2
0 5/2 −1/2
1 1 1


 (−7)4 0 0

0 (−2)4 0
0 0 (−8)4


 −2 1/2 1/2

0 5/2 −1/2
1 1 1

−1



Example 2

More interesting: Because 1+i
√
3

2 = ω6 and 1−i
√
3

2 = ω5
6,

C = S

[
ω6 0
0 ω5

6

]
S−1, so

C 6 = S

[
ω6
6 0

0 ω30
6

]
S−1 = S

[
1 0
0 1

]
S−1 = I

C 3 = −I

Because 1024 = 6(170) + 4 by long division, we have

C 1024 = (C 6)170C 3C = I 170(−I )C = −C .



A Discrete Linear Process

Example

A gene can be in one of two forms, dominant A or recessive b; and
an animal in which this gene appears can be one of three
“genotypes”: pure dominant AA, pure recessive bb, or hybrid Ab.
Suppose we always mate females with hybrid males and keep the
female offspring. In the long run, what will the distribution of
genotypes in the population we keep?

Suppose the distribution was initially d0 dominant, h0 hybrid and
r0 recessive (d0, h0, r0 fractions adding to 1). After one breeding
season, the distribution is

d1 =
1

2
d0 +

1

4
h0

h1 =
1

2
d0 +

1

2
h0 +

1

2
r0

r1 =
1

4
h0 +

1

2
r0

or


d1

h1

r1

 =


1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2




d0

h0

r0





Write fn =


dn

hn

rn

 and A =


1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2

.

Then fn+1 = Afn for each n, and we are asking what fn approaches
as n→∞. Using R, I can check

A1024 =


1
4

1
4

1
4

1
2

1
2

1
2

1
4

1
4

1
4

 , so f1024 =


1
4
1
2
1
4


(with some error so small that R won’t show it to me), no matter
what f0 was, because d0 + h0 + r0 = 1.

But why did all the columns of A1024 come out the same?



∣∣∣∣∣∣∣∣
1
2 − λ

1
4 0

1
2

1
2 − λ

1
2

0 1
4

1
2 − λ

∣∣∣∣∣∣∣∣ = (
1

2
− λ)(−λ+ λ2)

so eigvals of A are 1
2 , 0, 1. Suppose corresponding eigvecs are

u, v,w respectively, a basis for R3. So if

f0 = au + bv + cw , then

f1024 = A1024f0 = a(
1

2
)1024u + b(0)1024v + c(1)1024w ≈ cw .

Find w: When λ = 1,
−1

2
1
4 0

1
2 −1

2
1
2

0 1
4 −1

2

→


1 0 −1

0 1 −2

0 0 0

 :


1

2

1

 or


1
4
1
2
1
4





Conclusion: If A is diagonalizable and 1 is the largest eigval of A
in absolute value, then Anf is going to approach an eigvec w of A
corresponding to 1, i.e., a steady state: Aw = w. Because the
columns of An are just An times the columns of I , each column of
An will also go to such an eigvec.

Suppose the columns of A all add up to 1. Then the columns of
A− I add up to 0, so A− I is singular; i.e., 1 is an eigval of A. If
it’s the largest in absolute value and the eigenspace corr to it has
dim 1, then all the columns of An will go to the same vector, the
eigvec with sum 1.

And that was true of A =


1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2

.



One Last Pitfall

If an n × n matrix A has n different eigvals, then each has an
eigvec; these form a basis for Rn or Cn, and A is diagonalizable.

But if A has a repeated eigval, there may or may not be enough
eigvecs to give a basis.



Example

A =

[
3 0
0 3

]
is diagonalizable: S = I , Λ = A. Char poly is

(3− λ)2, with repeated root 3:[
3− 3 0

0 3− 3

]
→
[

0 0
0 0

]
:

[
1
0

]
and

[
0
1

]
Eigspace corr to 3 is all of R2, so we can pick a basis for R2

consisting of eigvecs of A.



Example

B =

[
3 1
0 3

]
is not diagonalizable: Char poly is again (3− λ)2,

with repeated root 3, and[
3− 3 1

0 3− 3

]
→
[

0 1
0 0

]
:

[
1
0

]
Eigval 3 has algebraic multiplicity 2, but geometric multiplicity
only 1. We can’t make a basis of R2 consisting of eigvecs of B, so
B isn’t diagonalizable.


