
Symmetric matrices and dot products

Proposition

An n × n matrix A is symmetric iff, for all x, y in Rn,
(Ax) · y = x · (Ay).

Proof.
If A is symmetric, then (Ax) · y = xTATy = xTAy = x · (Ay).

If equality holds for all x, y in Rn, let x, y vary over the standard
basis of Rn.

Corollary

If A is symmetric and x, y are eigvecs corresponding to different
eigvals λ, µ, then x · y = 0.

Proof.
λx · y = (Ax) · y = x · (Ay) = x · (µy) = µx · y, so
(λ− µ)(x · y) = 0, but λ− µ 6= 0.



Proposition

Every eigenvalue of a symmetric matrix (with real entries) is real,
and we can pick the corresponding eigenvector to have real entries.

Proof.
Suppose A is symmetric and Ax = λx with x 6= 0 (maybe with
complex entries). Then Ax = Ax = λx, so

λ(x · x) = (Ax) · x = x · (Ax) = λ(x · x) ;

but x · x is real and positive, so λ = λ.

And if x is an eigvec with complex entries corr to λ, then we can
multiply by some complex number and get at least one real nonzero
entry, and then x + x is an eigvec corr to λ with real entries.



Lemma
If A is a symmetric matrix with (real) eigvec x, then if y is
perpendicular to x, then so is Ay (i.e., A multiplies the orthogonal
complement (Rx)⊥ into itself).

Proof.
Let λ be the corr eigval. Because y · x = 0, we have

(Ay) · x = y · (Ax) = y · (λx) = λ(y · x) = 0 .



Symmetrics have orthogonal diagonalization

Theorem (Spectral Theorem)
If A is symmetric, then there is an orthogonal matrix Q and a
diagonal matrix Λ for which A = QΛQT .

Proof
Let λ1, x1 be a real eigval and eigvec of A, with ||x|| = 1. Pick an
orthonormal basis B for (Rx)⊥; then x,B form an orthonormal
basis for Rn. Use them as columns of an orthogonal matrix Q1,
with x1 first; then because A multiplies (Rx)⊥ into itself, we have

A = Q1

[
λ1 0

0 A2

]
QT

1 .



Because

Q1

[
λ1 0

0 A2

]
QT

1 = A = AT = Q1

[
λ1 0

0 AT
2

]
QT

1 ,

A2 is still symmetric; so we can repeat the process with A2; and if

A2 = Q2

[
λ2 0

0 A3

]
QT

2

then

A = Q1

[
1 0
0 Q2

] λ1 0 0
0 λ2 0
0 0 A3

[ 1 0
0 QT

2

]
QT

1 .

Continuing, we get to the desired form.



Example

For a symmetic A, R gives orthonormal eigenvectors (and
eigenvalues in decreasing order).



Suppose we have A symmetric, Q =
[
x1 . . . xn

]
and

Λ = diag(λ1, . . . , λn) with A = QΛQT . Write

Λ =


λ1 0 . . . 0
0 0 . . . 0
...

...
. . .

. . .

0 0 . . . 0

+ · · ·+


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . λn

 .



Then

Q


λ1 0 . . . 0
0 0 . . . 0
...

...
. . .

. . .

0 0 . . . 0

QT

=
[
x1 x2 . . . xn

]

λ1 0 . . . 0
0 0 . . . 0
...

...
. . .

. . .

0 0 . . . 0




xT1
xT2

...
xTn


= λ1x1x

T
1



And so on, so we get

A = λ1x1x
T
1 + λ2x2x

T
2 + · · ·+ λnxnx

T
n .

The xix
T
i ’s are the projection matrices Pi ’s on the subspaces Rxi ’s.

(And they are rank 1 matrices.)

Because they are the orthogonal projections onto an orthonormal
basis, they add up to I — if we apply them all to the same vector
and add up the results, we’ll get back the original vector.



Example:

A =

[
9 −2
−2 6

]
:

λ1 = 5, x1 =

[
1/
√

5

2/
√

5

]
λ2 = 10, x2 =

[
−2/
√

5

1/
√

5

]

A = 5

[
1/
√

5

2/
√

5

] [
1/
√

5 2/
√

5
]

+ 10

[
−2/
√

5

1/
√

5

] [
−2/
√

5 1/
√

5
]

= 5

[
1/5 2/5
2/5 4/5

]
+ 10

[
4/5 −2/5
−2/5 1/5

]

and

[
1/5 2/5
2/5 4/5

]
+

[
4/5 −2/5
−2/5 1/5

]
= I .



Definition
A quadratic form on Rn is a function q : Rn → R given by a
polynomial in which every term has degree 2: q(x) =

∑
i ,j ai ,jxixj .

Because xixj = xjxi , we can assume ai ,j = aj ,i , and rewrite
q(x) = xTAx where A is symmetric.

I If q(x) > 0 for every nonzero x, then q and A are positive
definite.

I If q(x) ≥ 0 for every x, then they are positive semidefinite.



Example 1

x2
1 + 2x2

2 − 3x2
3 − 4x1x2 + x1x3 + 2x2x3 = xT

 1 −2 1/2
−2 2 1
1/2 1 −3

 x

Because of the −3 on the main diagonal, this quadratic form is not
even pos semidef (nor is its associated matrix):

[
0 0 1

]  1 −2 1/2
−2 2 1
1/2 1 −3

 0
0
1

 = −3

Moral: If any main diagonal entry is ≤ 0, the matrix is not pos def.



Example 2

Positive definite:

(x + 3y)2 + 4(2x − y)2 = 17x2 − 10xy + 13y2

=
[

x y
] [ 17 −5
−5 13

] [
x
y

]
Example 3

(x + 3y)2 + 4(2y − z)2 + 2(2x + 3z)2

= 9x2 + 25y2 + 22z2 + 6xy − 16yz + 24xz

=
[

x y z
]  9 3 12

3 25 −8
12 −8 22

 x
y
z


Certainly always nonnegative, but if x = −3y = −3z/2, all 3
squares are 0; so pos semidef.



Example 4

What about f (x , y , z) = 23x2 + 14y2 + 8z2 − 28xy + 4xz + 32yz?

f (x , y) = 23(x2 +
4

23
xz +

4

529
z2) + 14(y2 − 16

7
yz +

64

49
z2)

+

(
8− 4

23
− 128

7

)
z2 − 28xy

= 23(x +
2

23
z)2 + 14(y − 8

7
z)2 − 1684

161
z2 − 28xy .

Can we make this negative for some x , y , z? Well, try setting
x = −(2/23)z and y = (8/7)z : That will make f into
−(1652/161)z2, which is negative for any z 6= 0. So f is not even
pos semidef.



Application: Second Derivative Test

Suppose z = f (x , y) is a function of two variables, and at a point
(a, b) the first derivatives ∂f /∂x and ∂f /∂y are both 0. Then the
Taylor series for f at that point is

f (a, b) +
∂2f

∂x2
(a, b)(x − a)2 +

∂2f

∂x ∂y
(a, b)(x − a)(y − b)

+
∂2f

∂y ∂x
(a, b)(y − b)(x − a) +

∂2f

∂y2
(a, b)(y − b)2 + . . .

where the rest is higher-degree terms. So near (a, b), f behaves
like the quadratic part, which is a quadratic form. When this form
is positive definite, the smallest value f takes on in a small
neighborhood of (a, b) at (a, b). In other words, (a, b) is a local
minimum of f .



So it would be useful to have a quick way to decide whether the
matrix is positive definite:[

∂2f
∂2x

(a, b) ∂2f
∂x ∂y (a, b)

∂2f
∂y ∂x (a, b) ∂2f

∂y2 (a, b)

]



Theorem
Let A be a symmetric matrix. TFAE:

(a) All pivots of A are positive.

(b) All upper left subdeterminants are positive. (This is
Sylvester’s criterion.)

(c) All eigenvalues of A are positive.

(d) The quadratic form xTAx is positive definite. (This is the
energy-based definition.)

(e) A = RTR where R has independent columns.

Proof
(a) =⇒ (b): a1,1 is first pivot, hence pos, and first subdet. By
row ops, upper left subdets of A are equal to subdets of a matrix,
say B, with the rest of the first column 0’s. Second entry on B’s
main diagonal is A’s 2nd pivot; because it and a1,1 are pos, B’s
2nd upper left subdet is also pos. Etc.



(b) =⇒ (a): First subdet is a1,1 > 0, first pivot. Repeat the rest
of (a) =⇒ (b), except reversing causality: k-th pivot is pos
because k × k subdet is pos.

(c) ⇐⇒ (d): Write A = QΛQT ; then

xTAx = xTQΛQTx = (QTx)TΛ(QTx) =
∑
i

λiy
2
i ,

where the yi ’s are the entries of QTx. So if all the λi ’s are
positive, xTAx is positive definite; while if one is negative, then
there are x’s for which xTAx is negative.

(c) =⇒ (e): Write A = QΛQT . Then by (c),
√

Λ makes sense
and is invertible. Set R = Q

√
ΛQT . Then A = RTR, and the

columns of R are independent.

(e) =⇒ (d): Given A = RTR, xTAx = (Rx) · (Rx) = ||Rx||2 ≥ 0.
And if R has ind cols, then the only x with ||Rx||2 = 0 is x = 0.



(a) =⇒ (e): Because A is symmetric, (a) says it has an
LDU-decomposition A = LDLT where L is lower triangular with 1’s
on the main diagonal, and D is diagonal with the pivots of A on its
diagonal. Set R =

√
DLT .

(d) =⇒ (b): Let bk = the upper left k × k subdet of A, and
ckj = the cofactor of akj if we evaluate bk along its last row. Then

for i < k,
∑k

j=1 aijckj is the value of the same det as bk except
that its last row is equal to its i-th row, so it is 0; but∑k

j=1 akjckj = bk . Note ckk = bk−1. We prove by induction (and
pos defness) that all bk ’s are pos:

Because A is pos def, b1 = a11 > 0. Assume bk−1 > 0. Set

x = (ck1, ck2, . . . , ckk , 0, . . . , 0) .

Then

0 < xTAx = xT (0, . . . , 0, bk , ?, . . . , ?) = bk−1bk ,

so bk > 0.



Notes on proof:

(e): The proof of (c) =⇒ (e) gives one square, in fact symmetric,
R that works (the Cholesky decomposition), but any R with
independent columns, even if not square, works.

Example:

A = RTR =

[
1 2 −1
0 3 1

] 1 0
2 3
−1 1

 =

[
6 5
5 10

]
, and R

has independent columns, so A is positive definite.

Therefore, the eigenvalues of −A are all negative, so the
solutions of

du

dt
= −Au

approach 0 as t →∞.

(c): The (c) =⇒ (d) part of the proof shows us the right way to
complete squares in quadratic forms. (Example, next page.)



Example 4, revisited:

For f (x , y , z) = 23x2 + 14y2 + 8z2 − 28xy + 4xz + 32yz , the
matrix is

A =

 23 −14 2
−14 14 16

2 16 8

 = QΛQT where

Q =

 1/3 2/3 −2/3
2/3 1/3 2/3
−2/3 2/3 1/3

 and Λ =

 −9 0 0
0 18 0
0 0 36

 , so

xTAx = xTQΛQTx = (QTx)TΛ(QTx)

= −9(
1

3
x +

2

3
y − 2

3
z)2 + 18(

2

3
x +

1

3
y +

2

3
z)2

+ 36(−2

3
x +

2

3
y +

1

3
z)2 ;

again, not even pos semidef.



Proposition

A symmetric matrix is positive semidefinite iff its eigenvalues are
nonnegative, or equivalently iff it has the form RTR.

Proof.
Same as the positive definite case, except that, if the cols of R are
not ind, there are nonzero x’s for which Rx = 0.



Example 1 revisited:

xT

 1 −2 1/2
−2 2 1
1/2 1 −3

 x

det[1] = 1, det

[
1 −2
−2 2

]
= −2, det

 1 −2 1/2
−2 2 1
1/2 1 −3

 = 5/2

Not even positive semidefinite. Eigenvalues from R: 3.5978953,
−0.2047827, −3.3931126



Example 2 revisited:
Positive definite: [

x y
] [ 17 −5
−5 13

] [
x
y

]

det[17] = 17, det

[
17 −5
−5 13

]
= 196

Eigenvalues from R: 20.385165, 9.614835



Example 3 revisited:

(x + 3y)2 + 4(2y − z)2 + 2(2x + 3z)2

= 9x2 + 25y2 + 22z2 + 6xy − 16yz + 24xz

=
[

x y z
]  9 3 12

3 25 −8
12 −8 22

 x
y
z



det[9] = 9 , det

[
9 3
3 25

]
= 216 , det

 9 3 12
3 25 −8

12 −8 22

 = 0 ;

pos semidef. (Eigvals from R: 33.29150, 22.70850, 0.)



Example 4 re-revisited:

23x2 + 14y2 + 8z2 − 28xy + 4xz + 32yz = xTAx where

A =

 23 −14 2
−14 14 16

2 16 8


det[23] = 23 , det

[
23 −14
−14 14

]
= 126 , det A = −5832 ,

so not pos def. (We saw eigvals were −9, 18, 36.)



Application: Tilted Ellipses

The equation of an ellipse in standard position is
x2/a2 + y2/b2 = 1, i.e.,

[
x y

] [ 1/a2 0
0 1/b2

] [
x
y

]
= 1 .

The semiaxes are a and b (the positive square roots of the
reciprocals of the eigvals). But a rotation matrix Q gives a tilted
ellipse. The axes are in the directions of the columns of Q.



Example 5

Λ =

[
1/16 0

0 1/9

]
, Q =

[
4/5 3/5
3/5 −4/5

]
:

A = QΛQT =

[
288/3600 −84/3600
−84/3600 337/3600

]

1

16
x2 +

1

9
y2 = 1

288

3600
x2 − 168

3600
xy +

337

3600
y2 = 1



Example 6

Describe the ellipse 13x2 − 6
√

3xy + 7y2 = 4.

Divide by 4:
13

4
x2 − 3

√
3

2
xy +

7

4
y2 = 1

The quadratic form has matrix

A =

[
13/4 −3

√
3/4

−3
√

3/4 7/4

]
= QΛQT

where

Q =

[
1/2

√
3/2√

3/2 −1/2

]
, Λ =

[
1 0
0 4

]
.

So the ellipse has axes tilted 60◦ from the xy -axes, with
half-lengths 1 and 1/2.



Example 7

Describe the ellipse x2 + 6xy + 4y2 = 16.

The matrix of the quadratic form is

A =

[
1/16 3/16
3/16 1/4

]
,

and R shows that its eigvals are 0.35688137 and −0.05338137.
The negative eigenvalue means that it is not an ellipse. The graph
of the quadratic form z = (x2 + 6xy + 4y2)/16 is a saddle, and the
cross section z = 1 is a hyperbola.

Or,

det[1/16] = 1/16, det

[
1/16 3/16
3/16 1/4

]
= −5/256 < 0


