
Section 6.7

Let A be an m× n matrix, so that multiplication by it is a function
from Rn into Rm, and multiplication by AT is a function from Rm

int R.. Recall that

Ax = 0m =⇒ ATAx = 0n

=⇒ ||Ax||2 = xTATAx = 0

=⇒ Ax = 0m

so A and ATA have the same nullspace. Similarly, so do AT and
AAT . Also, because rank(A) = rank(AT ), we get

r = rank(ATA) = rank(A) = rank(AT ) = rank(AAT ) .



ATA and AAT are square, symmetric, positive semidefinite
matrices, so they have orthonormal diagonalizations. We start with
ATA and eventually drag in AAT :

ATA is n × n, so there is an n × n orthogonal matrix V with
columns the orthonormal eigvecs of ATA, and an n × n diagonal
matrix D with nonnegative diagonal entries

σ21 ≥ σ22 ≥ · · · ≥ σ2n ,

the eigvals of ATA (and σi ≥ 0).



Let v1, . . . , vn be the columns of V . Temporarily, let r be the
subscript of the last nonzero σi . Then ATAv1, . . . ,ATAvr are just
nonzero multiples of v1, . . . , vr ; so the first r v’s are in the row
space of A. And vr+1, . . . , vn are in the nullspace of A. But
together they form a basis for Rn; so the first r v’s are a basis for
the row space of A, and r = rank(A), while the rest of the v’s form
a basis for the nullspace of A. The first r σ’s (the nonzero ones)
are the singular values of A.



Now we bring back AAT : For each i ≤ r ,

(AAT )(Avi ) = A(ATA)vi = A(σ2i vi ) = σ2i (Avi ) ,

so σ2i is an eigval of AAT , too, with corresponding eigvec Avi .

Also, if i 6= j , we have vi · vj = 0, so

(Avi ) · (Avj) = vTi (ATAvj) = vTi (σ2j vj) = σ2j (vi · vj) = 0 .

So Av1, . . . ,Avr are r orthogonal, nonzero (and hence lin ind)
vectors in col space of A, so they form a basis. If we divide them
by their lengths and throw in an orthonormal basis for the left
nullspace of A, we’ll have an orthonormal basis for Rn.



The v’s are unit vectors, so

||Avi || =
√

(Avi ) · (Avi ) =
√

vTi A
TAvi =

√
σ2i (vi · vi ) = σi .

So to get an orthonormal basis of Rm consisting of eigvecs of
AAT , we set ui = Avi/σi for i = 1, . . . , r , and throw in an
orthonormal basis ur+1, . . . ,um of the left nullspace of A (which
are eigvecs of AAT with eigval 0). Use these u’s as the columns of
an orthogonal matrix U; then AAT = UD̂UT , where D̂ is an
m ×m diagonal matrix with diagonal entries σ21, . . . , σ

2
r , 0, . . . , 0.



Singular Value Decomposition

Let Σ denote the m × n matrix with σ1, . . . , σr down the start of
its main diagonal and 0’s everywhere else. Then D = ΣTΣ and
D̂ = ΣΣT .

Theorem
A = UΣV T .

Proof.
We only need to check that these two matrices multiply all the
elements of some basis of Rn to the same things in Rm, so we can
check it on the v’s:
V Tvi = V−1vi is the i-th col of the identity, and Σ multiplies that
by σi if i ≤ r and by zero if i > r . Then U multiplies that to
σiui = σi (Avi/σi ) = Avi if i ≤ r and to the zero vector if i > r ;
but that is again Avi .



Algebraic consequences of SVD

ATA = (UΣV T )T (UΣV T ) = VΣTΣV T = VDV T (Check!)

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = UD̂UT (Check!)

Avi = σiui for i ≤ r (by def of ui )

A = σ1u1v
T
1 + · · ·+ σrurv

T
r

Each σiuiv
T
i is a rank-1 matrix, so it can be rebuilt from

m + n + 1 numbers (first row, first column, and σi ), vs. mn for A.
For big values of m, n, even if we only use the first, say, 80 terms
of the sum, 80(m + n + 1) is still much smaller than mn, so less
storage is required. And the sum of the first 80 terms is “the best
rank-80 approximation to A.”



The text answers the question:
When is the singular value decomposition the same as the
diagonalization?

I To have a diagonalization, A must be square, so all matrices
are square of the same size.

I Suppose A = UΣV T , where V T = U−1 = UT . Then A is
symmetric.

I And diagonal entries in Σ are nonnegative, so A is positive
semidefinite.



Application: .png image compression
Original photo:

527 KB
708 × 352 pixels, each at least 3 memory cells (different color
levels), so with no compression, 730 KB of memory.
If it is stored as a 708 × ((352)(3) = 1056) matrix, it could have
rank up to 708, i.e., up to 708 singular values. Suppose we use s
singular values to approximate the matrix. Then we need to store
M(s) = s(708 + 1056 + 1) = 1765s numbers.



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 1

161 KB, M(1) ≈ 1.7 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 5

263 KB, M(5) ≈ 8.6 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 20

343 KB, M(20) ≈ 34.5 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 50

410 KB, M(50) ≈ 86 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 80

446 KB, M(80) ≈ 138 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 100

462 KB, M(100) ≈ 172 KB



Application: .png image compression
Original photo:

527 KB
Number of singular values used: 1000(> 708?)

493 KB,
M(1000) ≈ 1724 KB



Example (using R, but it’s not needed)

> 15∗A
[,1] [,2]

[1,] 10 30
[2,] −7 24
[3,] −34 −12
> eigen(t(A)%∗%A)
$values

[1] 9 4
$vectors

[,1] [,2]
[1,] 0.6 -0.8
[2,] 0.8 0.6
> V←eigen(t(A)%∗%A)$vectors; v1←V[,1]; v2←V[,2]
> u1←(1/3)∗A%∗%v1; u2←(1/2)∗A%∗%v2



Example, continued

> B←t(A); B
[,1] [,2] [,3]

[1,] 0.6666667 −0.4666667 −2.266667
[2,] 2.0000000 1.6000000 −0.800000
> B[1,]←B[1,]∗3/2; B[2,]← B[2,]− 2∗B[1,]; B

[,1] [,2] [,3]
[1,] 1 -0.7 -3.4
[2,] 0 3.0 6.0
> B[2,]←B[2,]/3; B[1,]←B[1,] + .7∗B[2,]; B

[,1] [,2] [,3]
[1,] 1 0 -2
[2,] 0 1 2
> u3←c(2,-2,1); u3←u3/sqrt(sum(t(u3)%∗%u3)); u3

[1] 0.6666667 −0.6666667 0.3333333



Example, continued

> Sigma←cbind(c(3,0,0),c(0,2,0)); Sigma
[,1] [,2]

[1,] 3 0
[2,] 0 2
[3,] 0 0
> U←cbind(u1,u2,u3); U%∗%Sigma%∗%t(V)

[,1] [,2]
[1,] 0.6666667 2.0
[2,] −0.4666667 1.6
[3,] −2.2666667 −0.8
> A

[,1] [,2]
[1,] 0.6666667 2.0
[2,] −0.4666667 1.6
[3,] −2.2666667 −0.8



Example, continued

> u1%∗%t(v1)
[,1] [,2]

[1,] 0.4 0.5333333
[2,] 0.2 0.2666667
[3,] −0.4 −0.5333333
> u2%∗%t(v2)

[,1] [,2]
[1,] −0.2666667 0.2
[2,] −0.5333333 0.4
[3,] −0.5333333 0.4
> 3∗u1%∗%t(v1)+2∗u2%∗%t(v2)

[,1] [,2]
[1,] 0.6666667 2.0
[2,] −0.4666667 1.6
[3,] −2.2666667 −0.8



Example by hand

Find the singular value decomposition A = UΣV for

A =

 0 12/5
1 0
0 16/5

 .



Begin by diagonalizing

ATA =

[
0 1 0

12/5 0 16/5

] 0 12/5
1 0
0 16/5

 =

[
1 0
0 16

]

=

[
1 0
0 1

] [
1 0
0 16

] [
1 0
0 1

]T
:

Already diagonal, but we want the eigenvalues in decreasing order
(and the eigenvectors, in same order, with length 1, but that’s
done here):

σ1 =
√

16 = 4, v1 =

[
0
1

]
, σ2 =

√
1 = 1, v2 =

[
1
0

]
.



Now the first two u’s:

u1 = Av1/σ1 =

 12/5
0

16/5

 /4 =

 3/5
0

4/5

 ,
u2 = Av2/σ2 =

 0
1
0

 /1 =

 0
1
0

 .
The missing piece is an orthonormal basis for the left nullspace.
But dimN(AT ) = 3− 2 = 1, so all we need is either of the two
length-1 vectors perpendicular to both u1,u2:

[
3/5 0 4/5

0 1 0

]
→
[

1 0 4/3
0 1 0

]
: u3 =

 4/5
0

−3/5





So

U =

 3/5 0 4/5
0 1 0

4/5 0 −3/5

 , Σ =

 4 0
0 1
0 0

 , V =

[
0 1
1 0

]
:

A = UΣV T .


