o genetic operators that alter the composition of children during reproduc-
tion,

e valtes for various parameters that the genetic algorithm uses (population
size, probabilities of applying genetic operators, etc.). -

We discuss the main features of genetic algorithms by presenting three ex-
amples. In the first one we apply a genetic algorithm for optimization of 2 simple
function of one real variable. The second example illustrates the use of a ge-
netic algorithm to learn a strategy for a simple game (the prisoner’s dilemma).

The third example discusses one possible application of a genetic algorithm to

approach a combinatorial NP-hard problem, the traveling salesman @H.ozoﬂ.(w

1.1 Optimization of a simple function

In this section we discuss the basic features of a genetic algorithm for optimiza-
tion of a simple function of one variable. The function is defined as

flz)==z. maﬁoﬁ z)+1.0

and is drawn in Figure 1.1. The problem is to find = WoE the range [-1..2]
which maximizes the function f, i.e., to find zo such that

f(zo) > f(z), for all z € [-1..2].

It is relatively easy to analyse the function f. The zeros of the first derivative
f’ should be determined:

f'(z) = sin(107 - 2) + 107z - cos(107 - z) = 0;
the formula is equivalent to
tan(107 - z) = —~107z.
It is clear that the above equation has an infinite number of solutions,

xz, = §|t+m: for:=1,2,.

HOHO

ﬁ.HwFu_MIHIm: fori=—-1,-2

Yyt

where terms ¢; represent decreasing sequences of real numbers (for : = 1,2,.. .,
and i = —1,~2,...) approaching zero. v

Note also that the function f reaches its local maxima for z; if 7 is an odd
integer, and its local minima for @, if ¢ is an even integer (see Figure 1.1).

Since the domain of the problem is ¢ € [-1..2], the function reaches its
maximum for for z;9 = m + €19 = 1.85 + €19, where f(z19) is slightly larger than
f(1.85) = 1.85 - sin(187 + Z) + 1.0 = 2.85.

Assume that we wish to construct a genetic algorithm to solve the above
problem, i.e., to maximize the function f. Let us discuss the major nonoboam
of such a mmuo.ao &mozﬁg in burn.

Geudtic: Maoritims +OntShuctines = Evolchn fagmes”
Z. Eﬂ%\h:\mﬁN SorieaeVerdon (992

2.50

3.00 | # 4!

200 —

il >>,/

M
AR
o1tk
0.00
-0.50 —+ =
-1.00 + ,
-1.00 0.00 1.00 2.00

" Fig. HH Graph of the function f(z) = z -sin(10r - z) 4+ 1.0

1.1.1 Representation

We use a binary vector as a chromosome to represent real values of the variabl
z. The length of the vector depends on the required precision, which, in thi
example, is six places after the decimal point.

The domain of the variable z has length 3; the precision Hm@EmmBobﬁ implie
that the range [—1..2] should be divided into at least 3-1000000 equal size ranges
This means that 22 bits are required as a binary vector (chromosome):

2097152 = 2% < 3000000 < 222 = 4194304.

The mapping from a binary string (bs1bs ... bo) into a real number z fron
the range [—1..2] is straightforward and is completed in two steps:

o convert the binary string (byybyo . . . by) from the base 2 to base 10:
(barbao - - bo))z = (D2 bi - 10950 = o/,

e find a corresponding real number z:

z=-10+2" Nstt

where —1.0 is the left boundary of the domain and 3 is the length of the
domain.

" For example, a chromosome

(1000101110110101000111)



represents the number 0.637197, since

= AHOOQHOHHHo:oHoHoooH:vm = 2288967
and
z = —1.0 4 2288967 - 755 = 0.637197.
Of course, the chromosomes
{0000000000000000000000) and (1111111111111111111111)

represent boundaries of the domain, —1.0 and 2.0, respectively.

1.1.2 Initial population

The initialization process is very simple: we create a population of chromo-
somes, where each chromosome is a binary vector of 22 bits. All 22 bits for each
chromosome are initialized randomly.

1.1.3 Evaluation function

Evaluation function eval for binary vectors v is equivalent to the function f:

eval(v) = f(z),

" where the chromosome v represents the real value z.
As noted earlier, the evaluation function plays the role of the environment,
rating potential solutions in terms of their fitness. For example, three chromo-
somes:

vy = (1000101110110101000111),
va = (0000001110000000010000),
vs = (1110000000111111000101),

I

correspond to values z; = 0.637197, z, = —0.958973, and z; = 1.627888,
respectively. Consequently, the evaluation function would rate them as follows:

eval(vy) = f(z1) = 1.586345,
eval(ve) = f(z,) = 0.078878,
eval(vs) = f(z3) = 2.250650.

Clearly, the chromosome v3 is the best of the three chromosomes, since its
evaluation returns the highest value.

1.1.4 Genetic operators

During the reproduction phase of the genetic algorithm we would use two clas-
sical genetic operators: mutation and crossover.

As mentioned earlier, mutation alters one or more genes (positions in a
chromosome) with a probability equal to the mutation rate. Assume that the
fifth gene from the v chromosome was selected for a mutation. Since the fifth
gene in this chromosome is 0, it would be flipped into 1. So ﬁﬁ oWHoBOmoHn@ V3
after this mutation would be

= (1110100000111111000101).

This chromosome represents the value 4 = 1.721638 and f(z}) = —0.082257.
This means that this particular mutation resulted in a significant decrease of the
value of the chromosome v3. On the other hand, if the 10th gene was selected
for mutation in the chromosome v3, then

= (1110000001111111000101).

The corresponding value z§ = 1.630818 and f(z%) = 2.343555, an improvement
over the original value of f(z3) = 2.250650.

Let us illustrate the crossover operator on chromosomes vy and vs. Assume
that the crossover point was (randomly) selected after the 5th gene:

= (00000|01110000000010000),
v3 = (11100/00000111111000101).

The two resulting ommvmbm are

vz’ = (00000]00000111111000101),
vs' = (11100]01110000000010000).

These offspring evaluate to

F(v2') = £(—0.998113) = 0.940865,
F(vs') = £(1.666028) = 2.459245.

Note that the second offspring has a better evaluation than both of its parents.

1.1.5 Parameters

For this particular problem we have used the following parameters: population
size pop_size = 50, probability of crossover p, = 0. 25, probability of mutation
Pm = 0.01. The ».o:os:um section presents some eﬁszmuS_ results for such a
genetic system.



* 1.1.b Experimental results

In Table 1.1 we provide the generation number for which we noted an improve-
ment in the evaluation function, together with the value of the function. The

best chromosome after 150 generations was

= (1111001101000100000101),

<39H.

which corresponds to a value Tpme, = 1.850773.
As expected, Tpmar = 1.85 + €, and f(Zmas) is slightly larger than 2.85.

['Generation | Evaluation
number ﬁ -function |
1 1.441942

6 2.250003

8 2.250283

9 2.250284

10 2.250363

12 2.328077

39 2.344251

40 2.345087

51 2.738930

99 2.849246

137 2.850217
145 2.850227

Table1.1. Results of 150 generations

1.2 The prisoner’s dilemma

In this section, we explain how a genetic algorithm can be used to learn a
strategy for a simple game, known as the prisoner’s dilemma. We present the
results obtained by Axelrod [6]. .

Two prisoners are held in separate cells, unable to communicate with each
other. Each prisoner is asked, independently, to defect and betray the other
prisoner. If only one prisoner defects, he is rewarded and the other is punished.
If both defect, both remain imprisoned and are tortured. If neither defects, both
receive moderate rewards. Thus, the selfish choice of defection always yields a
higher payoff than cooperation — no matter what the other prisoner does —
but if both defect, both do worse than if both had cooperated. The prisoner’s
dilemma is to decide whether to defect or cooperate with the other prisoner.

The prisoner’s dilemma can be played as a game between two players, where
at each turn, each player either defects or cooperates with the other prisoner.
The players then score according to the payoffs listed in the Table 1.2.

{Player 1 [Player 2 | P, | P, | Comment
Defect Defect 1 | 1 | Punishment for mutual defection
Defect Cooperate | 5 | 0 | Temptation to defect and sucker’s payoft
Cooperate | Defect 0 | 5 | Sucker’s payoff, and temptation to defect
Cooperate | Cooperate | 3 | 3 | Reward for mutual cooperation

Table 1.2, Payoff table for prisoner’s dilemma game: F; is the payoff for Player ¢

We will now consider how a genetic algorithm might be used to learn a
strategy for the prisoner’s dilemma. A GA approach is to maintain a popula-
tion of “players”, each of which has a particular strategy. Initially, each player’s
strategy is chosen at random. Thereafter, at-each step, players play games and
their scores are noted. Some of the players are then selected for the next gen-
eration, and some of those are chosen to mate.f When two players mate, the
new player created has a strategy constructed from the strategies of its par-
ents (crossover). A mutation, as usual, introduces some variability igto players’
strategies by random changes on representations of these strategies.

1.2.1 Representing a strategy

First of all, we need some way to represent a strategy (i.e., a possible solution).
For simplicity, we will consider strategies that are deterministic and use the
outcomes of the three previous moves to make a choice in the current move.
Since there are four possible outcomes for each move, there are 4 X 4 x 4 = 64
different histories of the three previous moves. .

A strategy of this type can be specified by indicating what move is to be
made for each of these possible histories. Thus, a strategy can be represented by
a string of 64 bits (or Ds and Cs), indicating what move is to be made for each
of the 64 possible histories. To get the strategy started at the beginning of the
game, we also need to specify its initial premises about the three hypothetical
moves which preceded the start of the game. This requires six more genes,
making a total of seventy loci on the chromosome. : .

This string of seventy bits specifies what the player would do in every possi-
ble circumstance and thus completely defines a particular strategy. The string of

*'70 genes also serves as the player’s chromosome for use in the evolution process.

1.2.2 Outline of the genetic algorithm

Axelrod’s genetic algorithm to learn a strategy for the prisoner’s dilemma, works
in four stages, as follows:



L. Choose an 1nitial POpulation. Mach player 1s assigned a random string or
seventy bits, representing a strategy as discussed above.

2. Test each player to determine its effectiveness. Each player uses the strat-
egy defined by its chromosome to play the game with other players. The
player’s score is its average over all the games it plays.

3. Select players to breed. A player with an average score is given one mating;
a player scoring one standard deviation above the average is given two
matings; and a player scoring one standard deviation below the average
is given no matings.

4. The successful players are randomly paired off to produce two offspring per
mating. The strategy of each offspring is determined from the strategies
of its parents. This is done by using two genetics operators: crossover and
mutation.

After these four stages we get a new population. The new population will
display patterns of behavior that are more like those of the successful individuals
“of the previous generation, and less like those of the unsuccessful ones. With each
new generation, the individuals with relatively high scores will be more likely
to pass on parts of their strategies, while the relatively unsuccessful individuals
will be less likely to have any parts of their strategies passed on.

1.2.3 Experimental results

Running this program, Axelrod obtained quite remarkable results. From a
strictly random start, the genetic algorithm evolved populations whose median
member was just as successful as the best known heuristic algorithm. Some
behavioral patterns evolved in the vast majority of the individuals; these are:

1. Don’t rock the boat: continue to cooperate after three mutual cooperations

(i.e., C after (CC)(CC)(CC)?).

2. Be provokable: defect when the other player defects out of the blue
(ie., D after receiving (CC)(CC)(CD)).

3. Accept an apology: continue to cooperate after cooperation has been re-
stored

(ie., C after (CD)(DC)(CC)).

4. Forget: cooperate when mutual cooperation has been restored after an

exploitation (i.e., C after (DC)(CC)(CC)).

5. Accept arut: defect after three mutual defections (i.e., D after (DD)(DD)
(DD)). .

For more details, see [6].

.uH&m last three moves are described by three pairs (a1b;)(azbz)(agbs), where the a’s are
this player’s moves (C for cooperate, D for defect) and the b’s are the other player’s moves.

L. 1riav au.:._:.m Saivdiiiail pLruwvicia

In this section, we explain how a genetic algorithm can be used to approach
the Traveling Salesman Problem (TSP). Note that we shall discuss only one
possible approach. In Chapter 10 we discuss other approaches to the TSP as
well.

Simply stated, the traveling salesman must visit every city in his territory
exactly once and then return to the starting point; given the cost of travel
between all cities, how should he plan his itinerary for minimum total cost of
the entire tour?

The TSP is a problem in combinatorial optimization and arises in numerous
applications. There are several branch-and-bound algorithms, approximate al-
gorithms, and heuristic search algorithms which approach this problem. During
the last few years there have been several attempts to approximate the TSP by
genetic algorithms [72, pages 166-179]; here we present one of them.

First, we should address an important question connected with the chro-
mosome representation: should we leave a chromosome to be an integer vector,
or rather we should transform it into a binary string? In the previous two ex-
amples (optimization of a function and the prisoner’s dilemma) we represented
a chromosome (in a more or less natural way) as a binary vector. This allowed
us to use binary mutation and crossover; applying these operators we got legal
offspring, i.e., offspring within the search space. This is not the case for the trav-
eling salesman problem. In a binary representation of a n cities TSP problem,
each city should be coded as a string of [log, n] bits; a chromosome is a string
of n - [log, n] bits. A mutation can result in a sequence of cities, which is not a
tour: we can get the same city twice in a sequence. Moreover, for a TSP with
20 cities (where we need 5 bits to represent a city), some 5-bit sequences (for
example, 10101) do not correspond to any city. Similar problems are present
when applying crossover operator. Clearly, if we use mutation and crossover
operators as defined earlier, we would need some sort of a “repair algorithm”;
such an algorithm would “repair” a chromosome, moving it back into the search
space.

Tt seems that the integer vector representation is better: instead of using
repair algorithms, we can incorporate the knowledge of the problem into op-
erators: in that way they would “intelligently” avoid building an illegal indi-
vidual. In this particular approach we accept integer representation: a vector
v = (i193...%,) represents a tour: from ¢y to <3, etc., from %,y to ¢, and back
to 77 (v is a permutation of (12 ... n)).

For the initialization process we can either use some heuristics (for example,
we can accept a few outputs from a greedy algorithm for the TSP, starting from
different cities), or we can initialize the population by a random sample of
permutations of (12 ... 7).

The evaluation of a chromosome is straightforward: given the cost of travel
between all cities, we can easily calculate the total cost of the entire tour. .



In the 'L'SY we search tor the best ordering of cities in a tour. 1t is relatively
easy to come up with some unary operators (unary type operators) which would
search for better string orderings. However, using only unary operators, there
is a little hope of finding even good orderings (not to mention the best one)
[70]. Moreover, the strength of genetic algorithms arises from the structured in-
formation exchange of crossover combinations of highly fit individuals. So what
we need is a crossover-like operator that would exploit important similarities
between chromosomes. For that purpose we use a variant of a OX operator [31],
which, given two parents, builds offspring by choosing a subsequence of a tour
from one parent and preserving the relative order of cities WOB the other parent.
For example, if the parents are

(123456789101112) and
(731114125210968) -

and the chosen part is
(4567),
the resulting offspring is
(111124567210983).

As required, the offspring bears a structural relationship to both parents. The
roles of the parents can then be reversed in constructing a second offspring.

A genetic algorithm based on the above operator outperforms random
search, but leaves much room for improvements. Typical (average over 20 ran-
dom runs) results from the algorithm, as applied to 100 randomly generated
cities, gave (after 20000 generations) a value of the whole tour 9.4% above
optimum.

For full discussion on the TSP, the representation issues and genetic oper-
ators used, the reader is referred to Chapter 10.

1.4 Hillclimbing, simulated annealing, and genetic &mo-
rithms

In this section we discuss three algorithms, i.e., hillclimbing, simulated anneal-
ing, and the genetic algorithm, applied to a simple optimization problem. This
example underlines the uniqueness of the GA approach.

The search space is a set of binary strings v of the length 30. The objective
function f to be maximized is given as

F(v) =11 one(v) — 150|,

where the function one(v) returns the number of 1s in the string v.
For example, the following three strings

it

Vi = (LIUHIUIOLLIOIULL LI UL EoLY ),
vz = (111000100100110111001010100011),
v; = (000010000011001000000010001000),

would evaluate to

Flvy) = 1122 —150] = 92,
Flva) = [11.15~150] =
F(va) = |11 6 — 150 = 84,

(one(vy) = 22, one(vy) = 15, and one(vs) = 6).

The function f is linear and does not provide any challenge as an optimiz:
tion task. We use it only to illustrate the ideas behind these three algorithm
However, the Eemuomﬁbm characteristic of the function f is that it has one glob
maximum for

Il

I

= G::::::\:::H:H:H::vv

F(vg) =]11-30 — 150 = 186, and one local maximum for
= (0000000000000000000000006000000),

f(vi) =110~ 150] = 150.

There are a few versions of hillclimbing algorithms. They differ in the wa
a new string is selected for comparison with the current string. One version «
a simple (iterated) hillclimbing algorithm (M AX iterations) is given in Figur
1.2 (steepest ascent hillclimbing). Initially, all 30 neighbors are considered, an
the one v, which returns the largest value f (vn) is selected to compete with th
current string ve. If f(ve) < f(va), then the new string becomes the curren
string. Otherwise, no local improvement is possible: the algorithm has reache
(local or global) optimum (local = TRUE). In a such case, the next iteratio
(t <t + 1) of the algorithm is mxmocﬁmm with a new current string selected a
random.

It is Bﬂmﬁmmswm to note that the success or failure of the single iteratio
of the above hillclimber algorithm (i.e., return of the global or local optimum
is determined by the starting string (randomly selected). It is clear that if th
starting string has thirteen 1s or less, the algorithm will always terminate in th
local optimum (failure). The reason is that a string with thirteen 1s returns .
value 7 of the objective function, and any single-step improvement towards th
global optimum, i.e., increase the number of 1s to fourteen, decreases the valu
of the objective function to 4. On the other hand, any decrease of the numbe
of 1s would increase the value of the function: a string with twelve 1s yields :
value of 18, a mﬁ&cm with eleven 1s yields a value of 29, etc. This would pust
the search in the “wrong” direction, towards the local maximum.

- For problems with many local optima, the chances of hitting the globa
optimum (in a single iteration) are slim.

The structure of the simulated annealing procedure is given in Figure 1.3.



