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In this opening lecture, I will attempt a unifying overview of certain social
phenomena—war, arms racing, and revolution—from the perspective of mathemat-
ical biology, a field which, in my view, must ultimately subsume the social sciences.!?!
Unfortunately, few social scientists are exposed to mathematical biology, specifi-
cally the dynamical systems perspective pioneered by Alfred Lotka, Vito Volterra,
and others. In turn, few mathematical biologists have considered the application of
mathematical biology to problems of human society.H!

Particularly in areas of interstate and intrastate conflict is there a need to
explore formal analogies to biological systems. On the topic of animal behavior and
human warfare, the anthropologist Richard Wrangham observes,

[8]The perspective taken here, however, is quite distinct from that taken by Edward O. Wilson, in
his book Sociobiology (1980). Specifically, I do not discuss the role of genes in the control of human
social behavior. Rather, the argument is that macro social behaviors such as war, revolution, arms
races, and the spread of drugs may conform well to equations of mathematical biology—ecology
and epidemiology in particular. Perhaps “socioecology” would be a suitable name for this level of
analysis.

[ For a notable exception, see Cavalli-Sforza and Feldman (1981). See also the innovative and
understudied works, Rashevsky (1947) and Rashevsky (1949).
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“The social organization of thousands of animals is now known in con-
siderable detail. Most animals live in open groups with fluid membership.
Nevertheless there are hundreds of mammals and birds that form semi-
closed groups, and in which long-term intergroup relationships are there-
fore found. These intergroup relationships are known well. In general they
vary from benignly tolerant to intensely competitive at territorial borders.
The striking and remarkable discovery of the last decade is that only two
species other than humans have been found in which breeding males exhibit
systematic stalking, raiding, wounding and killing of members of neighbor-
ing groups. They are the chimpanzee (Pan troglodytes) and the gorilla (Pan
gorilla beringei) (Wrangham, 1985). In both species a group may have pe-
riods of extended hostility with a particular neighboring group and, in the
only two long-term studies of chimpanzees, attacks by dominant against
subordinate communities appeared responsible for the extinction of the
latter.

“Chimpanzees and gorillas are the species most closely related to humans,
so close that it is still unclear which of the three species diverged earliest .
(Ciochon & Chiarelli, 1983). The fact that these three species share a pat-
tern of intergroup aggression that is otherwise unknown speaks clearly for
the importance of a biological component in human warfare” (Wrangham,
1988, p.78). ‘

Although man has engaged in arms racing, warring, and other forms of orga-
nized violence for all of recorded history, we have comparatively little in the way
of formal theory. Mathematical biology may provide guidance in developing such
a theory. Wrangham writes, “Given that biology is in the process, of developing a
unified theory of animal behavior, that human behavior in general can be expected
to be understood better as a result of biological theories, and that two of our clos-
est evolutionary relatives show human patterns of intergroup aggression, there is a
strong case for attempting to bring biology into the analysis of warfare. At present,
there are few efforts in this direction.”® I would like to see more effort, specifically
more mathematical effort, in this direction and hope to stimulate some interest
among you. To convince you that there might conceivably be some “unified field
theory” worth pursuing, I want to share some observations with you. To set them
up, a little background is required. ;

The fundamental equations in the mathematical theory of arms races are the
so-called Richardson equations, named for the British applied mathematician and
social scientist Lewis Frye Richardson, who first published them in 1939.18! The fun-
damental equations in the mathematical theory of combat (warfare itself, as against
peacetime arms racing) were published in 1916 by Frederick William Lanchester.[?]

[S'Wrangham (1988, p.78).
[ Richardson (1939) and (1960).
[7lSee Lanchester (1916). For 2 contemporary discussion with references, see Epstein (1985).

Lecture 1 9

The formal theory of interstate conflict, to the extent there is one, res.ts on these
twin pillars, if you will. Meanwhile, the classic equations of mathematical ecology
are the Lotka-Volterra equations. o .

In light of the remarks above, I find the following fact intriguing: Thc_e R'.lch'fxrd—
son and Lanchester models of human conflict are, mathematically, specializations
of the Lotka-Volterra ecosystem equations. .

Before proceeding, I must make one point unmistakably clear. I do not‘ cla.n?l
that any of these models is really “right” in a physicist’s sense. 'Fhey are illumi-
nating abstractions. I think it was Picasso who said, “Art is a lie that helps us
see the truth.” So it is with these simple models. They continue to form the con-
ceptual foundations of their respective fields. They are universally taught; mature
practioners, knowing full-well the models’ approximate nature, none_theless entn_mt
to them the formation of the student’s most basic intuitions. And this because, like
idealizations in other sciences—idealizations that are ultimately “wrong”—they ef-
ficiently capture qualitative behaviors of overarching interest. That these ecosystem
and, say, arms race equations should look at all alike is unfexp.ected. ’I.‘ha.t, on closer
inspection, they are virtually identical is, to me, really quite interesting. Let me go
a bit further. . .

Under yet other parameter settings, the Lotka-Volterra equatlo‘ns yield s{;an—
dard models of epidemics. And, in other lectures, I will argue that social revolutions
and illicit drugs may well spread in a strictly analogous way or—at the very least—
that an epidemiological perspective on such social processes is promising. O'nce
more, the point is simply that social science might learn a lot :from mathematical
biology and, conceivably, might inherit some of its apparent unity. .

Let me now introduce the Lotka-Volterra equations and show how the classic
arms-race and wai models fall out as special cases. Then, I will explore the analogy
between revolutions and epidémics. In subsequent lectures, we will move beyond
these simple—too simple—models.

THE LOTKA-VOLTERRA WORLD

The Lotka-Volterra equations are as follows:
&1 = z1(r1 — an1Z1 + 61272) (L1)
£g = Ta(r2 + an1T1 — a22T2) .

In discussing these equations, I will freely invoke nonlinear dynam.ical' systems tf:r-
minology presented in lecture 6.1 Turning now to system (1.1), z:(t) is the species
i population at time t; the a’s and r’s are real parameters.

[8lUnder the name, “quadratic model,” equivalent equations and a number of specializations—
including combat variants—are discussed in Beltrami (1987).
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If all a;;’s equal zero and ry,72 > 0, we have unbounded exponential—so-called
Malthusian—growth. Since, ultimately, there are limits, for instance, environmental
carrying capacities, the terms a1;,a22 > 0 are preceded by a negative sign. Then, in
the language of lecture 6, the species are self-inhibiting. Leaving r; and 75 positive
and still assuming @12 = ag; = 0, this assumption yields a logistic approach for
each species to the positive phase plane equilibrium

(#1,%2) = (1,2,
a11 a2z

a node sink.
Now, life really gets interesting only when species interact, and this involves
the cross terms a2 and aog;.

MUTUALISM

Leaving everything else as is, let us how assume aj2,a9; > 0. In that case our
species are said to be in a relationship of mutualism, or reciprocal activation; the
population level of one feeds back positively on the growth rate of the other. Bees
and flowers—pollinators and pollinatees, if you will—provide examples. There are
many others.

Setting £; = £ = 0, the interior equilibrium conditions are

1 —anz + ez =0,

. 1.2
To 4+ @217 — a2z = 0. (12)
Of course, these are also the equilibrium conditions for the linear system:
T =71 — 01171 + @12
1 =71~ 01171 + C12%2, (1.3)

I3 =72 + @271 — a2

But this is exactly the famous Richardson model of an arms race! The more bees,
the more flowers, and vice versa. It’s the same in (1.3), but not quite as idyllic.
The more weaponry my adversary has, the more I want, and vice versa, up to some
economic—or ecological—limit or carrying capacity.

Richardson’s basic idea is that a state’s arms race behavior depends on three
overriding factors: the perceived external threat, the economic burden of military
competition, and the magnitude of grievances against the other party. I discuss
these at greater length in lecture 3. Suffice it to say here that 71,7, > 0 represent
fundamental grievances; ajo,a2; > 0 are the reciprocal activation coefficients (the
rates at which each arsenal grows in response to the other); and a;;, ass are the self-
inhibiting, or damping, terms which Richardson identified with économic fatigue.
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Mathematical biologists have long asked how mutualistic populations avoid ex-
ploding in what Robert May called an “orgy of mutual benefaction.”[® Likewise, we
can ask what mechanism damps the upward action-reaction military dynamic rep-
resented in the Richardson model. In each case, self-inhibitory effects must somehow
dominate reciprocal activation effects if a stable species equilibrium—or military
“balance of power”—is to emerge. Stability analysis bears this out.

Clearly, we can write (1.2) in matrix form r 4+ Az = 0,z € R? The positive (or
interior) equilibrium of system (1.1) and the sole equilibrium of (1.3) is therefore
given by Z = —A~!r. For each model, the stability of Z can be evaluated by the
methods of lecture 6.

" By a simple translation, the Richardson equations (1.3) are globally asymp-
totically stable at Z if and only if § = Ay is globally asymptotically stable at the
origin, where y = £ — Z. From lecture 6, we have the well-known stability criterion

Tr A <0and Det A>0. (1.4)
Now, Richardson’s economic fatigue means a1, a2 > 0. So, we have
TI‘A=—0,11—0,22 <0.

And we will have Det A > 0 precisely when aj1a22 > a12a21, which is to say that
inhibition (a;1a22) outweighs activation (@12a91), confirming our intuition.

One can demonstratel!®! that the eigenvalues of the Jacobian of (1.1) at Z have
negative real parts (indeed, are negative reals) when the same condition is met.
An isocline analysis is also revealing. We recall that an isocline is a curve—here
-a line—where one side’s rate of growth is zero; clearly, an equilibrium is a point
where isoclines intersect. From (1.2), the isoclines are given by:

o1(z1) = Ezl -3 (the z1 — isocline),
g ¢a112 arlz (1_5)
da(z1) = =223 + -2 (the z2 — isocline) .
a22 Qa22

For local stability of the equilibrium Z, we require the configuration of figure
1.1. But, this occurs only if the slope of ¢, exceeds the slope of ¢,, which is to say
a11/a12 > az1/aze, or

@11G22 > G21012 .

Our intuition is again confirmed: stability requires self-inhibition to exceed recip-

rocal activation in this sense.

[9lMay (1981).
[19)Goh (1979).
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FIGURE 1.1 Mutualistic Stability
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The main point, however, is that the classic Lotka-Volterra model of mutualistic
species interaction embeds, in its equilibrium behavior, the classic Richardson arms
race model.

AN ASIDE ON COEVOLUTION

In the models above, of course, the “phenotypes” do not change. In fact, ecosystem
dynamics select against certain phenotypes. Roughly speaking, phenotypic frequen-
cies and population levels have interdependent trajectories. This is very clear, for
example, in immunology, where antigens and antibodies coevolve in a so-called
“biological arms race.” But, of course, real arms races work this way, too. Ballistic
missiles beget antiballistic missile defenses, which beget various evasion and defense
suppression technologies. The machine gun makes cavalry obsolete, giving rise to
the “iron horse”—the tank—which begets antitank weapons, which beget special
armor, and so on. Michael Robinson’s analogy between moth-bat coevolution and
the coevolution of World War II air war tactics is apposite.
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“Moths and their predators are in an arms race that started millions of years
before the Wright brothers made the Dresden raids possible. Butterflies ex-
ploit the day, but their ‘sisters’ the moths dominate the insects’ share of the
night skies. Few vertebrates conquered night flying. Only a small fraction
of bird species, mostly owls and goatsuckers, made the transition. Bats, of
course, made it their realm. Many species of bats are skilled ‘moth-ers’:
they pursue them at speed after detecting them with their highly attuned
echolocation system. Some moths, however, have developed ‘ears’ capable
of detecting the bat’s ultrasonic cries. When they hear a bat coming, the
moths take evasive action, including dropping below the bat’s track. The
parallels of the response of Allied bombers to the radar used by the Ger-
mans in World War II are interesting. If we visualize the bombers as the
moths, and radars on the ground and in the night-fighter aircraft as bats (a
reversal of sizes), the situation is similar. Bombers used rearward-listening
radar to detect enemy night fighters. When they detected a fighter, they
took evasive action. But heavy bombers, heavily laden, were not very ma-
neuverable. They couldn’t dodge about quite as well as moths. Some pilots
tried to drop their aircraft into a precipitous dive. Moths also do this; it is
easy for them to fold their wings and drop. The next stage in the night-
battle escalation is predictable. The night fighter’s radar was eventually
tuned to detect the bomber’s fighter-detector, and thus the bomber itself.
Bats have not yet tuned in on moths’ ears.

“Bombers also used technological disruption. Night fighters came to be
guided to bombers by long-distance radars on the ground. The fighters
started winning. But nothing remains static. The ground radars could be

" jammed by various kinds of radio noise. The technological battle swung

the other way. Then the fighters acquired radar. Much like a bat, a fighter
emitted and listened to radar signals of its own. These, too, proved to be
susceptible to countermeasures, however. The RAF could jam the fight-
ers’ radar or ‘clutter’ it with strips of aluminum foil. Each bomber in a
formation dropped one thousand-strip bundle per minute, so that huge
clouds of foil foiled the radar. Amazingly, there may be a similar counter-
weapon among moths. Some moths can produce ultrasonic sounds that fall
within the bats’ audio frequency. The moths’ voice boxes are paired, one
on each side of the thorax; double voices must be particularly confusing.

. Alien sounds in their waveband could confound the bats, exactly in the

same way the foil confounded the fighters.

“The next steps in the bat-versus-moth war may simply be awaiting dis-
covery by some bright researcher; after all, we did not know a lot about
echolocation in bats until after World War II. My guess would be that the
detector will get more complex to meet the defenses. This may already have
happened; bats specializing in moths with ears may have moved to a higher

13
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frequency sound outside the moths’ hearing range!” (Robinson, 1992, pp.
77-79).

Quite clearly, levels of armament (in the international system) and levels of
population (in an ecosystem) interact, as in the Lotka-Volterra and Richardson
models, but phenotypes themselves are also changing. In biology, there is a mathe-
matical theory of coevolution.[!1l In social science, there isn’t. There probably could
be, so I simply mention it as a promising direction.

Now, let us shift gears from the mutualistic/arms race variant of (1.1). Specif-
ically, instead of assuming that a2 and ap; are positive, assume that they are
negative.

COMPETITION
Rearranging slightly, the equations (1.1) take the form

. 1
& =a19712+11T1{1—— ),
ks
(1.6)

) z2
£y = a21Z1T2 +T2z2 {1 — k_ "
2

where k; = (r;/ai;) > 0 is the carrying capacity of the environment for each species.
These equations were published in 1934 by the great Russian mathematical biologist
G. F. Gause in his book The Struggle for Ezistence. Indeed, he termed a12 and a3
“coefficients of the struggle for existence.”12

Now, examining (1.6), each species would exhibit logistic growth to its respec-
tive carrying capacity but for these interaction—struggle—terms. Including them,
(1.6) gives a picture of uniform mixing of the populations z; and z3, with contacts
proportional to the product z;z2. Now, however, since the interaction coefficients
are negative, each contact kills species 1 at rate a7 and species 2 at rate az1. Quite
clearly, a parallel to combat is suggested. But more is true.

In fact, unbeknownst to Gause, (1.6) is an exact form of the famous—and to
this day ubiquitous—Lanchester model of warfare![*?]

The transition from arms race to war, then, might be seen as a transition from
the case of a12,a21 > 0 to the case of aj2,az1 < 0. In the latter context, the well-
known biological “principal of competitive exclusion” simply maps to the military
principle that, usually, one side wins and the other side loses. Both these competitive

[(111Roughgarden (1979).
12)Gause (1934, p. 47).
[13] Lanchester (1916).
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exclusion behaviors reflect the mathematical fact that the interior (z1,z2 > 0) equi-
librium of (1.6) is a saddle. The stable equilibrium in the mutualistic—peacetime
arms race—case was a node. To the extent these models are correct, then, we can
say (pacem Poincaré) that war is topologically different from peace; the outbreak
of war is a bifurcation from node to saddle.

Thus far we have been exploring a mathematical biology of interstate relations;
what about intrastate dynamics? Is there a Lotka-Volterra perspective on revo-
lution, for instance? And, to what biological process might such social dynamics
correspond?

REVOLUTIONS AND EPIDEMICS
Consider the following specialization of (1.1):

a2 =091 > 07y =12 =013 = a0 =0. (17)

Then (1.1) becomes
£1 = —012Z122,

(1.8)

which is the simplest conceivable epidemic model. Now, rather than armament
levels, £ represents the level of susceptibles, and x2 the level of infectives, while the
parameter a3 is the infection rate, expressing the contagiousness of the infection.
Ideal homogeneous mixing, once more, is assumed. If population is constant at Py,
then z; = Py — 72 and we obtain

Ty = a12T1T2,

ig = alzzz(Po - :L‘z) ) (1.9)

our familiar friend the logistic differential equation. Here, z; = 0 is an unstable
equilibrium; the slightest introduction of infectives, and the disease whips through
the whole of society.

A traditional tactic for combating the spread of a disease is removal of infectives.
Sometimes, nature does the removing, as with fatal diseases; often, society removes
infectives from circulation by quarantine. The simplest possible assumption is that
removal is proportional to the size of the infective pool, yielding the following variant

. of (1.1):

) = —a12T1%2, (1.10)
£ = @12T1T2 — T2%T2,

with 72 > 0. This is the famous Kermack-McKendrick (1927) threshold epidemic
model,14 so-called because it exhibits the following behavior.

14 Kermack and McKendrick (1927). For a contemporary statement, see Waltman (1974).
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By definition, there is an epidemic outbreak only if £2 > 0. But this is to say

a19T122 — TaZg > 0, or B
T > —. (1.11)
a12

The initial susceptible level z1(0) must exceed the threshold p =72 /a12, some-
times called the relative removal rate, for an epidemic to break out. The fact that
epidemics are threshold phenomena has important implications for public health
policy and, I will argue below, for social science.

The public health implication, which was very controversial when first discov-
ered, is that less than universal vaccination is required to prevent epidemics. By
the threshold criterion (1.11), the fraction immunized need only be big enough that
the unimmunized fraction—the actual susceptible pool—be below the threshold p.
“Terd immunity,” in short, need not require immunization of the entire herd. For
instance, diphtheria and scarlet fever require 80-percent immunization to produce
herd immunity.1's! Hethcote and Yorke argue that “a vaccine could be very effec-
tive in controlling gonorrhea.. .for a vaccine that gives an average immunity of 6
months, the calculations suggest that random immunization of 1 /2 of the general
population each year would cause gonorrhea to disappear.” (28]

Mathematical epidemic models are discussed more fully in lecture 4. With the
above as background, let us now consider the analogy between epidemics (for which
a rich mathematical theory exists) and processes of explosive social change, such as
revolutions (for which no comparable body of mathematical theory exists). Again,
a more careful and deliberate development is given in lecture 4. Here, we simply
offer the main idea. It will facilitate exposition to re-label the variables in (1.10). If
S(t) and I(t) represent the susceptible and infective pools at time t and if r and v
are the infection and removal rates, the basic model is:

S§=-rSI,

. (1.12)
I=rSI-AnI,
with epidemic threshold

S>%=p. (1.13)

The basic mapping from epidemic to revolutionary dynamics is direct. The
infection or disease is, of course, the revolutionary idea. The infectives I (t) are
individuals who are actively engaged in articulating the revolutionary vision and
in winning over (“infecting”) the susceptible class S(t), comprised of those who are
receptive to the revolutionary idea but who are not infective (not actively engaged
in transmitting the disease to others). Removal is most naturally interpreted as the
political imprisonment of infectives by the elite (“the public health authority”).

[15) Edelstein-Keshet (1988, p. 255).
[16] Hethcote and Yorke (1980, p. 47).
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Many familiar tactics of totalitarian rule can be seen as measures to minimize r
(the effective contact rate between infectives and susceptibles) or maximize  (the
rate of political removal). Press censorship and other restrictions on free speech
reduce 7, while increases in the rate of domestic spying (to identify infectives) and
of imprisonment without trial increase +.

Symmetrically, familiar revolutionary tactics—such as the publication of un-
derground literature, or “samizdat”-—seek to increase r. Similarly, Mao’s directive
that revolutionaries must “swim like fish in the sea,” making themselves indistin-
guishable (to authorities) from the surrounding susceptible population, is intended
to reduce 7.

GORBACHEYV, DeTOQUEVILLE, AND THE THRESHOLD

Interpreting the threshold relation (1.13), if the number of susceptibles Sy is, in fact,
quite close to p, then even a slight reduction (voluntary or not) in central authority
can push society over the epidemic threshold, producing an explosive overthrow
of the existing order. To take the example of Gorbachev, the policy of Glasnost
obviously produced a sharp increase in r, while the relaxation of political repression
(e.g., the weakening of the KGB, the release of prominent political prisoners, and the
dismantling of Stalin’s Gulag system) constituted a reduction in v. Combined, these
measures evidently depressed p to a level below Sy, and the “revolutions of 1989”
unfolded. Perhaps DeToqueville intuited the threshold relation (1.13), describing
this phenomenon, when he remarked that “liberalization is the most difficult of
political arts.”

As a final element in the analogy, systematic social indoctrination can produce
herd immunity to potentially revolutionary ideas. We even see “booster shots” ad-
ministered at regular intervals—May 1 in Moscow; July 4 in America—on which
occasions the order-sustaining myths (“The USSR is a classless workers’ paradise”;
“Everyone born in America has the same opportunities in life”) are ritually cele-
brated.

Now, as I said before, all these analogies are doubtlessly terribly crude. I cer-
tainly do not claim either that any of the models are right or that the dynamical
analogies among them are exact. Yet, the very fact that a single ecosystem model—
the Lotka-Volterra equations—could specialize to equations that even caricature,
however crudely, such basic and important social processes as arms racing, warring,
and rebelling is, I believe, very interesting and serves to reinforce the larger point
with which I began: social science is ultimately a subfield of biology.
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CONCLUSION

Finally, let me conclude with an admission. I was surprised when I began to notice
these connections. But why should we be surprised? In certain non-Western cul-
tures, where our species is seen as “a part of nature,” where gods—like the sphinx—
can be part man and part lion, all these connections between ecosystems and social
systems might appear quite unremarkable. But in Western cultures shaped by the
0ld Testament, where God creates only man—not the fishes, birds, and bushes—
in his own image, man is seen as “apart from nature.” And, accordingly, we are
surprised when our models of fish—or worse yet, of viruses—turn out to be inter-
esting models of man. Perhaps we are true Darwinians more in our heads than in
our hearts. Creatures of habit, we are captive to a transmitted and slowly evolving
culture. But, of course, this too is “only natural.”

In this lecture I would like to give an introduction to some simple mathemat-
ical models of combat, including my own Adaptive Dynamic Model. Here, we are
concerned with the course of war, rather than the arms races or crises that may
precipitate war. Before discussing specifics, it may be well to consider the basic
question: What are appropriate goals for a mathematical theory of combat at this
point?

First and foremost, we need to be humble. Warfare is complex. Outcomes may
depend, perhaps quite sensitively, on technological, behavioral, environmental, and
other factors that are very hard to measure before the fact. Exact prediction is
really beyond our grasp.

But, that’s not so terrible. Theoretical biologists concerned with morphogene-
sis—the development of pattern—are, in some cases, situated similarly. For the par-
ticular leopard, we certainly cannot predict the exact size and distribution of spots.
But, certain classes of partial differential equations—reaction-diffusion equations—
will generate generic animal coat patterns of the relevant sort. So, we feel that this
is the right body of mathematics to be exploring. The same sort of point holds
for epidemiologists. Few would claim to be able to predict the exact onset point
or severity of an epidemic. Theoreticians seek simple models that will generate a
reasonable menu of core qualitative behaviors: threshold eruptions, persistence at

,(

19
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endemic levels, recurrence in cycles, perhaps chaotic dynamics. The aim is to pro-
duce transparent, parsimonious models that will generate the core menu of gross
qualitative system behaviors. This, it seems to me, is the sort of claim one would
want to make for a mathematical theory of combat.

Now, in classical mechanics, the crucial variables are mass, position, and time.
In classical economics, they are price and quantity. War, traditionally, is about ter-
ritory and, unfortunately, death, or mutual attrition. A respectable model, at the
very least, should offer a plausible picture of the relationship between the funda-
mental processes of attrition and withdrawl (i.e., territorial sacrifice). I will discuss
attrition first.

LANCHESTER’S EQUATIONS

The big pioneer in this general area was Frederick William Lanchester (1868-1945).
The eclectic English engineer made contributions to diverse fields, including auto-
motive design and the theory of aerodynamics.'”l He is best remembered for his
equations of war, appropriately dubbed the Lanchester equations. First set forth
in his 1916 work, Aircraft in Warfare, these have a variety of forms, the most
renowned of which is called—for reasons that will be given shortly—the Lanchester
“square” model.!’8] With no air power and no reinforcements, the Lanchester square
equations are

B __,p
dt
(2.1)
QE =—-rR
dt :

Here, B(t) and R(t) are the numbers of “Blue” and “Red” combatants—each of
which is an idealized fire source—and b, 7 > 0 are their respective firing effectiveness
per shot. Qualitatively, these equations say something intuitively very appealing,
indeed, seductive: The attrition rate of each belligerent is proportional to the size
of the adversary. In the phase plane, the origin is obviously the only equilibrium of
(2.1) and the Jacobian of (2.1) at Z is

DF(z) = (_2 ‘8) :

(17l Lanchester (1956).

[18]gee Lanchester (1916). The same model was apparently developed independently by the Rus-
sian M. Osipov (1915).
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The eigenvalues are clearly ++/7b. Hence, the origin is a saddle, though the positive
quadrant is all we care about. The system (2.1) is, of course, soluble exactly. With
B(0) = By and R(0) = Ho,

w0 =1[(ro E) e (o) ]
0= (- i) 7 (s )

with various trajectories for R and B over time. Depending on the parameters (d,7)
and the initial values (Bo, Rp), either side can start ahead and lose, or start behind
and win, as is observed historically.l'?]

The most celebrated result of the theory is the so-called Lanchester Square
Law, which is obtained easily. From (2.1), we have

(2.2)

dR bB

—=— 2.3
dB TR’ (23)

Separating variables and integrating from the terminal values (R(t), B(t)) to the
higher initial values,

Ro Bo
T RdR=0b) / BdB,
R(t) B(t)

we obtain the state equation
r(R3 — R(t)*) = b(B§ — B(t)*). (2.4)

Of course, stalemate occurs when B(t) = R(t) = 0, which yields the Lanchester
Square Law:

bBZ =rR: or
. (2.5)
By = BRO .

This equation is very important, It says that, to stalemate an adversary three times
as numerous, it does not suffice to be three times as effective; you must be nine
times as effectivel This presumed heavy advantage of numbers is deeply embed-
ded in virtually all Pentagon models. For decades, it supported the official dire
assessments of the conventional balance in Central Europe, giving enormous weight

119} Indeed, the numerically smaller force was the victor in such notable cases as Austerlitz (1805);
Antietam (1862); Fredericksburg (1862); Chancellorsville (1863); the Battle of Frontiers (1914);
the fall of France (1940); the invasion of Russia (Operation Barbarossa, 1941); the battle of Kursk
(1943); the North Korean invasion (1950); the Sinai (1967); the Golan Heights (1967 and 1973);
and the Falklands (1982), to name a few.
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to sheer Soviet numbers and placing a huge premium on western technological
supremacy. That, of course, had budgetary implications. But, the presumption of
overwhelming Soviet conventional superiority also shaped the development of so-
called theater-nuclear weapons and produced a widespread assumption that their
early employment would be inevitable, which drove the Soviets to seek preemptive
offensive capabilities, and so on, in an expensive and dangerous military coevolution
(see the preceding lecture).

The whole dynamic, while driven by myriad political and military-industrial
interests on all sides, was certainly supported by Lanchester’s innocent-looking
linear differential equations (2.1). But, the linearity itself implicitly assumes things
that are implausible on reflection and it mathematically precludes phenomena that,
in fact, are observed empirically. Moreover, anyone exposed to mathematical biology
would have found the Lanchester variant (2-1) to be suspect immediately.

DENSITY
The equations, once again, are
dB
E = —TR, (26)
dR
i —bB. 2.7)

In this framework, increasing density is a pure benefit. If the Red force R grows, a
greater volume of fire is focused on the Blue force B, and in (2.6), the Blue attrition
rate grows proportionally. At the same time, however, no penalty is imposed on
Red in (2.7) when, in fact, if the battlefield is crowded with Reds, the Blue target
acquisition problem is eased and Red’s attrition rate should grow.

In warfare, each side is at once both predator and prey. Increasing density is a
benefit for an army as predator, but it is a cost for that same army as prey. The
Lanchester square system captures the predation benefit but completely ignores the
prey cost of density. The latter, moreover, is familiar to us all. For instance, if a
hunter fires his gun into a sky black with ducks, he is bound to bring down a few.
Yet if a single duck is flying overhead, it takes extraordinary accuracy to shoot it
down. For ducks, considered as prey, density carries costs.

And, as any ecologist would expect, the effect is indeed observed. Quoting
Herbert Weiss, “the phenomenon of losses increasing with force committed was
observed by Richard H. Peterson at the Army Ballistic Research laboratories in
about 1950, in a study of tank battles. It was again observed by Willard and the
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present author [Weiss] has noted its appearance in the Battle of Britain data.” (20]

i i g istical study of 1500 land battles.[2!]
h rk referred to is D. Willard’s statistic . t
: e’ivftl)ohis credit, Lanchester actually offered a second, n01.1hnear variant of these
equations, which is much more plausible in this ecological light. Here,

4R _ _vB)R, (2.8)
dt
4B _ —m)B. (2.9)
dt

In parentheses are the Lanchester square terms reflecting the “predatilon b;ni?n t
of density, but they are now multiplied by a tt?rm (the prey force le;) reuc-l::tiog
“prey costs,” as it were. The Red attrition rate in (2.8‘) slows as the Rd tpo}; ntlon
goes to zero, reflecting the fact that, as the prey density fa.ﬂs, t;hel pr;:;tE ac.i ’or petach
(“foraging”) requirements for the next km increase. Equivalently, s adensigy
rate grows if, like the ducks in the analogy, its density grows. In Smm;a?z; 3 densi
cost is present to balance the density benefit Feﬁected in the parenthes ;
If we now form the casualty-exchange ratio

dR b

BT
separate variables, and integrate as before, we obtain the state equation
r(Ro — R(t)) = b(Bo - B(%)),
the stalemate requirement
and the s o = bBo.

.Now as against the Lanchester Square Law, it does suffice to be three (rather than
'nine)’ times as good to stalemate an adversary three times as numerous.

AMBUSH AND ASYMMETRY
i i i hester equations have been de-
her, asymmetrical, variants of the basic Lanc ‘ n o
m.e;‘br gxma.mple, the so-called ambush variant meutes.tht? square law ﬁ}rle
concentration capacity to one side (the ambushers) but denies it to the other (the

ambushees). Here,

dB

— =-rR,
dt
-di: = -bBR,

120} Weiss (1966).
21} willard (1962).
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so that

dB _r

dR ~ bB’

b(B§ - B(t)*) = r(Ro - R(t)).

Now assuming a fight to the finish (R(t) = B(t) = 0) and equal firing effectiveness
(r = b), a Blue force of By can stalemate a Red force numbering B2—a hundred
can hold off ten thousand. It’s Thermopolae. ‘

REINFORCEMENT

Thus far the discussion has concentrated on the dynamics of engaged forces. Often,
however, there is some flow of reinforcements to the combat zone proper. But, there
are limits to the number of forces one can pack into a given area—there are “force
to space” constraints. One might therefore think of the combat zone as having a
carrying capacity and, accordingly, posit logistic reinforcement. Attaching such a
term to the Lanchester nonlinear attrition model produces

dR R
E = -—bRB+aR(1 — ?) ’
(2.10)

dB B
~ = -TBR+pB (1_3) ,

where «, 8, K, and L are positive constants. As observed in the preceding lecture,
this is eractly Gause’s (1935) famous model of competition between two species,
itself a form of the general Lotka-Volterra ecosystem equations.

Equations (2.10) admit four basic cases, corresponding to different “war histo-
ries.” These are shown in the phase portraits in figure 2.1.
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FIGURE 2.1 Phase portraits for Lanchester/Gause Model

© @

Source: Based on Clark (1990, p. 194).

Cases (a) and (b) are clear instances of the biological “principle of ‘competi—
tive exclusion,” or military principle that one or the other side usu.a]ly wins. Qase
(c) shows the horrific stable node—the “permanent war” that .nelther side wins.
Finally, we have case (d), a saddle equilibrium. Any perturbatlol? (off the stable
manifold) sends the trajectory to a Red or Blue triumph. There is, however, the
interesting and important region below both isoclines. Each side feels encoura‘ged
in this zone; reinforcement rates exceed attrition rates so the forces are growing.
But, for instance, as the trajectory crosses the B = 0 isocline, matters §tart to sour
for Blue; B goes negative while Red forces continue to grow. Expectations of Blue
defeat may set in, Blue morale may collapse, and, as a result, the Blue force can
“break” long before it is physically annihilated. Indeed, the general phenomenon of
“breakpoints” is common.



