LECTURE 4
Revolutions, Epidemics, and Ecosystems:
Some Dynamical Analogies
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The preceding lectures have concerned interstate arms racing (mutualism) and
war (competition). Let us now turn attention to intrastate processes. This lec-
ture concerns revolutions. The next concerns the spread of drugs. Clinging to our
Volterra-like “grand unified theory,” the processes of interest in these lectures is the
threshold transmission of some “signal” through a population, epidemic-like pro-
cesses, in short. Epidemics proper are fascinating—and obviously very important—
things. You would certainly enjoy William McNeill’s wonderful book, Plagues and
Peoples, which concerns the role of infectious diseases in human history.!8l Since
these lectures proceed from the analogy to epidemics, perhaps an introductory word
or two on dynamical analogies per se is in order.

¢ indicates the same value as in column 1 (figure 3.2).

{  ANALOGIES

Any two processes whose mathematical descriptions have the same functional form,
and whose state variables and parameters can be put in one-to-one correspondence,

166]McNeill (1976).
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are said to be dynamical analogies. It is a startling fact that a huge variety of £
seemingly unrelated processes are analogous in this sense. For example, the same _ 
equation that describes a damped harmonic oscillator, such as a pendulum with =

friction, also describes an oscillating electric circuit:

“all that is required is to relabel the state variables and parameters in-
volved. Thus, the state variable representing the displacement of the me-
chanical system becomes the electrical charge of the electrical system; the
velocity becomes the current; the mass of the particle becomes the induc-
tance, mechanical force becomes EMF, etc. With similar reinterpretations,
the same dynamical equation can be regarded as describing rotational sys-
tems, acoustic systems, hydraulic systems, and so on” (Rosen, 1970, p.

54).[67]

Another example is the analogy between electrostatic attraction under
Coulomb’s Law and gravitational attraction under Newton’s Law. The magnitude -
of each force is proportional to the product of the two charges/masses, inversely pro- =

portional to the square of the distance separating them, and directed along the line

joining them. As another instance, Kelvin’s circulation theorem in fluid mechanics
is identical in its mathematical form to Faraday’s Law in electrodynamics. Both re- -
late, via Stokes’ Theorem, the flux of a vector field to the circulation (or current) in
a boundary such as a conducting loop.!68l Countless further examples could be pro-
vided. The physical diversity of diffusive processes satisfying the “heat” equation,

or oscillatory processes satisfying the “wave” equation, is virtually boundless.

But dynamical analogies are more than beautiful testaments to the unifying 3
power of mathematics: they are useful. In particular, “Analogies are useful for °
analysis in unexplored fields. By means of analogies an unfamiliar system may be &
compared with one that is better known. The relations and actions are more easily

visualized, the mathematics more readily applied and the analytical solutions more
readily obtained in the familiar system.” (6]

Analogy in this sense has played a powerful role in the development of science, ;.
engineering, and also social science, a notable example of the latter being Samuel-

son’s application to economics of classical maximum principles of physics. In one

colorful discussion, for instance, he argues that “if you look at the monopolistic firm =
as an example of a maximum system, you can connect up its structural relations
with those that prevail for an entropy-maximizing thermodynamic system. Pressure

and volume, and for that matter absolute temperature and entropy, have to each
other the same conjugate or dualist relation that the wage rate has to labor or the

land rent has to acres of land.” Samuelson provides an elegant diagram that, in

[67] EMF is electromotive force.

[68]See, for example, Marsden and Tromba (1976, p. 338).
169]Olson (1958, p. iv).
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 his words, does “double duty, depicting the economic relationships as well as the
- thermodynamic ones.” 79

Murray Gell-Mann has written on the application of nonlinear dynamics to

- various systems, including social systems. In his words,

“Many of these applications are highly speculative. Furthermore, much
of the theoretical work is still at the level of ‘mathematical metaphor.’
But, I think this situation should cause us to respond with enthusiasm to
the challenge of trying to turn these metaphorical connections into real
scientific explanations” (Gell-Mann, 1988, p. 4).

It is in this highly speculative, metaphorical spirit that I proceed in the next two
3 lectures. This essay examines the analogy between epidemics (for which a well-
* developed mathematical theory exists) and processes of explosive social change,
* such as revolutions (for which no comparable body of mathematical theory ex-
* ists). Are revolutions “like” epidemics? More precisely, is it useful to think of these
. processes as analogous? Connections to predator-prey systems are also explored
,_‘._-' - and the spatio-temporal generalizations of these revolution/epidemic/predator-prey

models—reaction-diffusion equations—are examined. The realm of reaction-

diffusion equations is a natural one to explore. Such equations are central to the
. mathematical theory of pattern formation, and it is the evolution, propagation,
5 and stability of social patterns that is, ultimately, our concern. We begin with the
~ simple analogy between revolutions and infectious diseases.[

¢ REVOLUTIONS AS EPIDEMICS

¢ The particular aims of revolutionary action, of course, vary widely from case to

case. In one instance, the revolutionaries’ goal may be the overthrow of mcnarchy;

3 in another, it may be the installation of theocracy; in yet a third, it may be the es-

tablishment of democracy. Given this enormous variation in objectives, the thought
" that there might be an underlying structure common to all revolutions is an intrigu-
- ing one. By a “common structure,” I of course mean a mathematical model whose

dynamics—at least at some crude level—are mimicked by revolutionary processes
in general, regardless of their political “substance,” as it were—regardless, that is,

["lSamuelson (1972, pp. 8-9).

["lWhile the connections between revolutions, epidemics, and ecological systems presented here
have not, to my knowledge, been presented elsewhere, the thought that the spread of ideas might
be analogous to the spread of disease has been explored. A small literature sprang up in the 1960’s,
following the publication in 1957 of the seminal work, Bailey (1957). For a good overview with
references, see Dietz (1967). See also Rappaport (1974, pp. 47-59).
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of what the revolution “is about.” In considering this notion, I take, as one tan-
talizing point of departure, the mathematical theory of epidemics; these processes
exhibit common dynamical structures despite obvious differences among commu-
nicable diseases. Measles, mumps, and smallpox are clearly different diseases; yet
their propagational dynamics may be indistinguishable from a mathematical stand-
point.[”2 Although the points of correspondence between epidemics and revolutions
will be quickly evident, it will prove useful to delay specific analogizing until a sim-
ple epidemic model is presented.

A BASIC EPIDEMIC MODEL

The epidemiologist’s problem, as Paul Waltman puts it, “is to describe the spread:

of an infection within a population. As a canonical example one thinks of a small W removed class is described by the following system of nonlinear differential equa-

. tions:(78]

group of individuals who have a communicable infection being inserted into a large
population of individuals capable of ‘catching’ the disease. Then an attempt is made

to describe the spread of the infection in the larger group.” 173] In the simple model

first developed by Kermack and McKendrick, (74 the population is assumed to be
constant and divided into three disjoint classes:

S(t): the susceptible class comprised of individuals who, though not infective,
are capable of becoming infective;

I(t): the infective class, comprised of individuals capable of transmitting the
disease to others; and

R(t): the removed class, consisting of those who have had the disease and
are dead, or who have recovered and are permanently immune, or are
isolated until recovery and permanent immunity occur.

The following rules are assumed to govern the spread of the disease:

(i)  The population is constant over the time interval of interest. Births,
deaths from causes other than the disease in question, immigration,
and emigration are all ignored.

(i) The rate of change of the susceptible class is proportional to the product
of the number of susceptibles S(t) and the number of infectives I(t).

(iii) Individuals are removed from the infectious class at a rate proportional
to I(t). )

Rule (i) is a straightforward simplifying assumption whose relaxation is discussed
below. Rule (ii) represents the assumption that the transfer of individuals from the

[72)See Hethcote (1976, p. 336). See also Hethcote (1989, pp. 119-44).
("3l Waltman (1974, p. 1).
(741 Kermack and McKendrick (1927). See Murray (1989, pp. 611-18).
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* susceptible class into the infectious pool proceeds at a rate proportional to the num-

ber of contacts between infectives and susceptibles. That the contact rate should

* be proportional to the product of the class sizes I and S implies uniform mixing
3 of the two groups and instantaneous contraction of the disease upon exposure (la-

tency and incubation periods are both zero). In effect, the law of mass action is

! assumed to z'a,pply. As Waltman notes, “This is reasonable if the population consists
; of students in a school whose changing classes, attending athletic events, etc. mix
j the population.” Importantly for our purposes, he continues, “It would not be true

In an environment where socio-economic factors have a major influence on con-

. tacts.”["8] Finally, rule (iii) implies that all infectives have the same probability of

removal (recovery, death, or isolation). The model does not account for the length

~ of time an individual has been infective.

b Ac.cepting these definitions and rules, and treating the overall population as
a continuum, the flow of individuals from the susceptible to the infective to the

ds

E = —’I"SI,

dI

o rSI —~I, (4.1)
dR

E = ’YI’

with initial conditions S(0) = Sg > 0,1(0) = Iy > 0 and R(0) = 0.
The constants r and <y are called the infection rate and the removal rate, and

¥ p=/r is termed the relative removal rate.

THE THRESHOLD CONDITION

Now, under what conditions will an epidemic occur in this model? To say that
an epidemic occurs is to say that the infectious class grows or, equivalently, that

o dI/dt > 0, which from (4.1) implies that rSI — I > 0 or, simply, that

o
S>r—p. (4.2)

4 SlWaltman (1974, p. 2).

[ Because the flow is from susceptible (S) to infective (I to removed (R), this is termed an SIR
model. If the infectious phase is followed, not by removal (e.g., immunity), but by reentry into the
sn.lsceptible pool, an SIS model would be called for. “In general, SIR models are appropriate for
viral agent diseases such as measles, mumps, and smallpox, while SIS models are appropriate for
some bacterial agent diseases such as meningitis, plague, and venereal diseases, and for protozoan
agent diseases such as malaria and sleeping sickness.” Hethcote (1976, p. 336). See also Hethcote
(1989). The cornerstone of the mathematical epidemiology literature remains Bailey (1957). See

also Bailey (1975). A comprehensive contemporary text is Anderson and May (1991).
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This is a basic result.!”? For an epidemic to occur, the number of susceptibles
must exceed the threshold level p—the relative removal rate defined above.

POLITICAL INTERPRETATION

The basic analogy to revolutionary dynamics is direct. The infection, or disease, is
of course the revolutionary idea. The infectives I(t) are individuals who are actively
engaged in articulating the revolutionary vision and winning over (“infecting”) the
susceptible class S(t), comprised of those who are receptive to the revolutionary
idea, but who are not infective (not actively engaged in transmitting the disease
to others). Removal is most naturally interpreted as the political imprisonment of
infectives—R(t) is the “Gulag” population, the set of unfortunate revolutionaries
who have been captured and isolated from the susceptible population.!78]

Many familiar tactics of totalitarian rule can be seen as measures to minimize
r (the effective contact rate between infectives and susceptibles) or maximize 7y
(the rate of political removal). Press censorship and the systematic inculcation of
counterrevolutionary beliefs reduce r, while increases in the rate of domestic spying
(to identify infectives) and of imprisonment without trial increase .

Symmetrically, familiar revolutionary tactics—such as the publication of un-
derground literature, or “samizda "__gseek to increase r. Similarly, Mao’s directive
that revolutionaries must “swim like fish in the sea,” making themselves indistin-
guishable (to authorities) from the surrounding susceptible population, is intended

to reduce 7.

GORBACHEYV, DeTOQUEVILLE, AND SENSITIVITY TO INITIAL
CONDITIONS

Interpreting relation (4.2) somewhat differently, if the number of susceptibles, So,
is in fact quite close to p, then even modest reductions (voluntary or not) in cen-
tral authority can push society over the epidemic threshold, producing an explosive
overthrow of the existing social order. To take the example of Gorbachev, the policy
of Glasnost obviously produced a sharp increase in r, while the relaxation of polit-
ical repression (e.g., the weakening of the KGB, the release of prominent political
prisoners, the dismantling of Stalin’s Gulag system) constituted a reduction in 7.
Combined, these measures evidently depressed p to a level below Sp, and the “rev-
olutions of 1989” unfolded. Perhaps DeToqueville intuited relation (4.2), describing

("] Obviously, the system (4.1) has a great many further mathematical properties of interest. For
a discussion, see Braun (1983, pp. 456-73).
[78]1n this discussion, we ignore executions.
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this sensitivity to initial conditions, when he remarked that “liberalization is the

" most difficult of political arts.”

TRAVELING WAVES

In.the Fliscussion thus far, the spatial dimension has only been implicit. In fact
epidemics spread across geographical areas over time. And one generally thinks’.
of revolutions spreading as well. Specifically, we often invoke the terminology of
waves. Recently, we saw “a wave of democratic revolutions” sweep across Eastern
Europe. Perhaps this sort of language seems natural for a reason: if one generalizes
mo.del (4.1) to explicitly include the spatial diffusion of infectives, traveling waves
do indeed emerge. And this process, of course, has a political interpretation

The one-dimensional spatio-temporal generalization of (4.1) is: .

as

E = —’!'IS, )
oI %I (43)
Fri (rIS—’yI)-i-D@.

An infective spatial diffusion term, D321 /82, has been introduced into the second
equation, which bears some resemblance to the classical heat equation, I; = DI,
where D is the thermal—or, in this case, the political—“diffusivity” of t’he mediuar;;’
The presence of the parenthesized term makes the equation a so-called reaction-.
diffusion relation.

Now, as set forth in lecture 6, one posits traveling wave solutions to (4.3) of
the form

S(z,t) = S(z), I(z,t)=1I(z), z=z—ct, (4.4)

where ¢ is the wave speed. The boundary conditions S(oco) = 1, S(—00) = 0, I(c0) =
I(—00) = 0 must also be met. Bypassing mathematical specifics that are well pre-
senteq elsewhere,[™l the basic conclusions are, first, that no epidemic wave propa-
gates 1f So < «y/r. This, ?f course, is the basic threshold condition from model (4.1).
Wha,t. (1is nt?vs;, hovilever, is that if that threshold level of susceptibility is exceeded
an epidemic/revolutionary wavefront propagates. And it d i ,
b g s speed of propagation, c,

¢ =2[D(rSp - 7)|V/2. (4.5)

.Basic counterrevolutionary tactics aim not only to minimize r (the rate at
Whlcf.l f:ox?tact produces a transmission) and maximize v (the removal rate), but
to minimize D as well. Physical curfews, restrictions on free assembly, internal

[79] n
|See Murray (1989, pp. 661-63), Britton (1986, pp. 61-71), and the discussion in lecture 6 of
this volume.



LECTURE 5
A Theoretical Perspective on The Spread of
Drugs

INTRODUCTION

This lecture explores another social process of considerable interest, the spread of
drugs, and is divided into three parts. In Part I, a simple dynamic model of a drug
epidemic in an idealized community is built up from basic assumptions concerning
the interaction of subpopulations—pushers, police, and not-yet-addicted residents
of the community.!*® The model combines elements of the epidemic, ecosystem,
] combat, and arms race models discussed above. Equilibria of the resulting dy-
namical system are located and classified using tools of linearized stability analysis.
Trajectories are plotted for a set of initial conditions. In Part I1, a spatial—reaction-
diffusion—variant is presented. Then in Part III, supply, demand, and price con-
siderations are introduced; essential, and perhaps counterintuitive, relationships

(991 Obviously, particular dynamics depend on particular drugs. No particular drug is mentioned
here. We imagine an idealized drug that is totally and irreversibly addictive after some small, but
hard to predict, number of uses.
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between legalization, price, and crime are revealed. And in this light, the role of
education is discussed.

PART I. A DRUG EPIDEMIC MODEL

We begin with definitions and a brief discussion of variables and parameters. At
any time, the population is assumed to be divided into four disjoint groups.

S(t): The nonaddicted and susceptible population.

I(t): The population of addicts, all of whom are assumed, in this simple model,
to be pushers. The variable I is used because this group plays a role that
is mathematically analogous to the infective group in epidemiology, a
parallel we shall exploit.

L(t): The law enforcement, or police, force, whose sole function is assumed to be
the arrest and removal of pushers. i

R(t): The arrested and removed, or imprisoned, population. For this simple
model, removal is assumed to be permanent.

In addition to these variables, a number of parameters are involved.

B: The rate at which a contact between a pusher and a susceptible produces
_a new addict/pusher (price dependence is discussed in Part III below).

78 The natural growth rate in the susceptible pool, as youths come of age, say.

v: The rate at which a contact between a pusher and a cop results in removal
of the former.

a:  The rate at which an increase in pushers increases the growth rate in
police. This variable reflects social alarm.[100)

b: The economic damping to which the police growth rate is subject.

All parameters are nonnegative real numbers.

Let us see if we cannot arrive at a plausible model by reasoning from first
principles, noting connections to related phenomena as we go. Pedagogically, the
exercise may illuminate the type of reasoning that often goes into the construction

of models in mathematical biology, a field which, ultimately, subsumes the social
sciences.

(100 Tragically, problems get more attention when they impinge on the elite than when they are
confined to the ghetto. In a more realistic model, therefore, o would depend on the socio-economic
classes into which drug abuse, and/or the crime associated with it, had spread. Here o is a constant.
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As the simplest conceivable model, then, let us imagine that there is no popu-
lation growth and no police force. At every time ¢, the population is constant at N

" and is the sum of susceptibles S(t) and pushers I(t). That is,

N = 8(t) + I(t). (5.1)

How do S and I evolve? Well, for a susceptible to become an addict/pusher, he
or she must first come into contact with a pusher. Recognizing that real societies
are heterogeneous and patchy, let us nonetheless follow the practice of theoretical
epidemiology and ecology and, as a first cut, assume homogeneous mixing of push-
ers and susceptibles. The number of contacts is then taken to be SI. Of course,
only some fraction B of contacts produces new addicts. One may think of 8 as
the “just say no” parameter. If 8 = 0, every susceptible says no and there is no
growth in the addicted, or “infected,” pool. If 8 = 1, then every contact produces a
new addict/pusher. On these very primitive assumptions, then, the flow out of the
susceptible pool and into the addicted pool is fully described by the equations

% =—BSI, (5.2)
dI
= = PSL. (5-3)

This system is none other than the most basic epidemic model, termed an “SI”
model since the flow is strictly from susceptible to infective. Now, by virtue of (5.1),
we may write S = N — I, and (5.3) becomes

dI
= =BIWN -1I) (5.4)

whose solution is the well-known equation of logistic growth. The addicted popula-
tion increases until it equals the entire population; the “epidemic” whips through
the whole of society.

In fact, there are some brakes on this process. Hewing to our assumption that
the drug is illegal, there is some rate at which pusher/addicts are removed from
general circulation. As a first refinement on our model, let us imagine a fixed police
force of size Lg. As in the pusher-susceptible sphere, “law of mass action” dynamics
are assumed. There is homogeneous mixing of pushers and police, so that contacts
proceed as Lol. And, per contact, the removal rate is . The idea, then, is that, as
before, susceptibles flow into the addicted/pushing pool at rate SSI. But, pushers
flow out of circulation and into the “removed” class at rate yLgl. Since vLg is just
a constant, call it o. Then we have the model:

ds

= =—BSI, (5.5)
% =BS8I —ol, (5.6)
@ =ol. (5.7)

dt



92 Nonlinear Dynamics, Mathematical Biology, and Social Science

Students of mathematical epidemiology will recognize this as the classic
Kermack-McKendrick SIR epidemic model. It is a threshold model in that sus-
ceptibles must exceed some minimum level in order for the infected, or addicted,
class to grow. This is straightforward. To say the addicted class grows is to say that

dI
a>0,

which is to say that 8ST — oI > 0, or that

o
§>—. 5.8
3 (5.8)
The ratio /3 is often termed the relative removal rate of the infection. It is the
epidemic threshold. While the infection ultimately dies out—since everything even-
tually flows into the removed compartment—it decreases monotonically only if

S < o/p. Otherwise, it enjoys a period of growth—the epidemic pha.se——before
dying out, as shown in figure 5.1, in which p = ¢ /8.

FIGURE 5.1 An SIR Epidemic Model

S
> S

Now, from (5.5), (5.6), and (5.7), it is evident that population is still constant, since

ds  dI dR_,
dt  dt  dt

Of course, population is not generally constant. There are so-called vital dynamics,
birth and death.
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As the next obvious refinement on our elementary model, then, let us assume
net “births” or entrants of xS into the susceptible cohort, where p is the per capita
growth rate. Needless to say, logistic rather than Malthusian growth is another
possibility. But, keeping matters as simple as possible, we then obtain the model:

ds
= = —BSI+uS, (5.9)
% — ASI - oI, (5.10)
% =ol. (5.11)

Notice that (5.9) and (5.10) are the classic Lotka-Volterra predator-prey model,
with pushers as predators and not-yet-addicted susceptibles as prey. Predators
would die out (at rate —oI) were there no prey to feed on (at rate 8SI); and
prey would flourish (at rate uS) were they not consumed (at rate 3SI) by preda-
tors. Aside from the origin, this system has as its equilibrium the point (S,I) =
(o/B, 1/ B), which is a center.l*0ll As shown in figure 5.2, the populations oscillate;
the orbits are closed curves in the SI phase plane.

FIGURE 5.2 Lotka-Volterra Predator-Prey Model

Populations Predators

3 3
2.5 2.5

2 2
1.5 1.5

1 1
0.5 0.5

i Pre
20 40 60 80 100 7° 0.5 1 1.5 2 o

Above, we saw that in the SIR epidemic model, the infected or addicted class
ultimately goes to zero, as all addicts are removed. Here, we have Lotka-Volterra
dynamics in which predators and prey cycle around an equilibrium. Could it be
that the complete model will combine these—damped and oscillatory—tendencies
in some way? We will return to this question.

[101) A5 developed in lecture 6, at the equilibrium, the eigenvalues of the Jacobian of (5.9)—(5.10)
are imaginary. The equilibrium is nonhyperbolic and linearized stability analysis does not apply.
But because the eigenvalues are imaginary, the equilibrium is a center or a focus; and because the
system admits a Hamiltonian formulation (see lecture 4), the equilibrum is a center or a saddle.

Hence, it is a center.
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THE ARMS RACE COMPONENT

Above, we defined ¢ as the product yLy where Ly was some fized level of law
enforcement or police. But, the police force is not necessarily constant. So, let us
relax this assumption. What, to a first order, would determine the size of the police
force? Well, if no one cares about the level of addiction in society, I (t), there will
not be any growth. Thinking of the parameter  as a coefficient of societal alarm,
we might posit that, without any economic damping, the police force should grow
as al. But, as in arms race modeling, it is reasonable to assume some economic
fatigue or damping, under which rates of growth decline the larger is the military
establishment. If the damping coefficient is b, then the police growth rate is given
by L = ol - bL, just as in the Richardson arms race model of lecture 3, and the
complete model is as follows:

% = —BSI + S, (5.12)
% =pSI—~IL, (5.13)
% ==kl (5.14)
% —al —bL. (5.15)

Notice that the term —yIL in (5.13) is a pusher attrition rate reminiscent of a
Lanchester combat model presented in lecture 2, so this dynamical system combines
elements of the epidemic, ecosystem, arms race, and combat models developed in
preceding lectures. Before engaging in a linearized stability analysis of this dynam-
ical system, let us briefly trace through the effect if, from some time, everyone says
no; that is, if 8 = 0. Clearly, since 8 = 0, the growth rate in the addicted/pusher
pool in (5.13) is strictly negative; this entire group is eventually removed. That
being the case, (5.15) reduces to

dL

@ = b

and the police force, too, “withers away,” a reasonable qualitative result since the
apprehension of pushers is their sole function in this model. In the end, We have a
policeless society of nonaddicts and a removed population of former pushers. This
little thought experiment completed, let us bring to bear some more powerful tools.

95
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LINEARIZED STABILITY ANALYSIS

Assuming all parameters to be positive in (5.12)—(5.15), what are th<.e nqntrivial
equilibria of the system, the nonzero population levels where all dgrlvatlves are
zero? We really care only about S, I, and L, and a bit of algebra quickly leads to

the unique positive equilibrium:

S Dy | LB~ 31‘) . (5.16)
61D = (3053

Evaluated at this equilibrium (call it Z), the Jacobian matrix of (5.12)—(5.14),
which ecologists term the community matrix, is given by

0 —4yL 0 .
J@)=|(p 0o -FI. (5.17)
0 « —b

The eigenvalues are solutions to the third-order characteristic equation
Det(J(Z) — Mid) =0, (5.18)
where id is the identity matrix. Expanding, this characteristic equation is
A2 4622 + (%ﬂ + mi) A+buyL =0. (5.19)
Equilibrium is stable if and only if the roots \; of this equation have Re(\;) <0,
For a third-degree equation,
AN4+a N+ar+az=0,
the Routh-Hurwitz necessary and sufficient conditions!t%? for Re(}) < 0 are
a; > 0,a3 >0, and ajaz —az > 0. (5.20)
The first two of these are obviously satisfied by (5.19), and so is the third, since

ba
a1a2—a3=—ﬁm>0.

Therefore, the positive equilibrium in (5.16) is stable. There is an endemic level of

addiction. . .
Earlier, I raised the question whether our simple model might somehow manifest

both the damped behavior of the Kermack-McKendrick SIR epidemic model and.

(102]gee, for example, Murray (1989, pp. 702-04), or May (1974, p. 196).
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the cyclical behavior of the Lotka-Volterra predator-prey model, each of which is
a special case of (5.12)—(5.15). A canonical behavior combining these would be a
spiral approach to our positive equilibrium. And this is precisely the behavior we
have, as shown in figure 5.3, which offers a small gallery of phase portraits. Here,
the equilibrium happens to be (3, I, L) = (108, 2, 12).[103]

FIGURE 5.3 Drug Model Orbits and Solutions.

\
W\ NN AR
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Note: Here z is our S, y is our I, and z is our L.

| t

[103]The parameter values employed are: 8 = 0.1, p = 0.2, y =0.9, o = 0.6, and b= 0.1.
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A natural extension is to add space. As demonstrated earlier, this can be ac
complished by appending various diffusion terms to an underlying dynamic model
yielding a so-called reaction-diffusion system. One such generalization is offerec
next.

PART Il. DRUG WAR ON MAIN STREET: A NONLINEAR
REACTION-DIFFUSION MODEL

The population is comprised of three subgroups, whose numbers and spatial dis
tributions evolve over time. We imagine that events unfold on a one-dimensiona
interval—a “street.” Let us define S(z,t), I(z,t), and L(z,t) as the susceptible
infective, and law enforcement levels at street position z at time ¢.04 Denotiny
these functions (of z and t) simply as S, I, and L, the generalized equations are
follows:

oS %S

o = ~BSI+uS+8ss57

ol 828 8L 521

s =ﬂSI_7IL—6SIW+6“5x_2+6”W’ (5.21
8L I 0%L

_ E = €SIL—bL—61La_x§ +5LL-5F.
Ignoring all diffusion and cross-diffusion terms, the first two equations are exactl
as before. The third equation has been refined slightly. The Richardsonian damp
ing term (—bL) is retained, but the first expression is now £SIL rather than th
previous al. The idea, recall, is that the police force grows with the level of societa
alarm at the drug problem itself. This level of alarm is assumed to be a functiol
of arrests of which the (tax-paying and police-buying) susceptibles are aware. Un
der our normal assumption, the arrests are proportional to IL, and susceptibl
awareness grows with exposure to these arrests, hence further multiplication by S
yielding the overall term £SIL.1195] These, then, are the reaction kinetics in th
reaction-diffusion system (5.21).

Turning to the diffusive processes, the simplest is the susceptible case. Here
the term §55(825/82?) is added, as in the models of the previous chapter, indicat
ing that the susceptibles—while interacting with other groups—diffuse. Analogou
diffusion terms appear in the equations for infectives (67;(82I/8z?)) and polic
(61.(82L/8z?)). All these diffusivities (6;) are positive. However, the infective an
police equations are more complex than this. In the police equation, there is als

[104]Here, we will not track the removed (i.e., arrested) group explicitly.

[105]We assume again that the exposuress occur through homogeneous mixing, or mass actio
kinetics.
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a cross-diffusion term (—67.(8%I/8z?)), indicating that police diffuse toward in-
fective concentrations; they engage in “crimo-taxis,” if you will. In turn, infectives' =
(i.e., pushers) cross-diffuse in the direction of susceptibles (—65(825/07?)), and
cross-diffuse away from police (617(82L/8z?)). I further assume that 677 > sz
a pusher would rather avoid arrest than convert a susceptible to a new drug user.
With all constants set,[1%l the assignment of initial spatial distributions for the
subpopulations is all that remains to specify the model. E

Imagine, then, that everything transpires on a street 12 blocks long. At time
zero, the susceptibles occupy the middle four blocks, and are 1000 strong at every
point. Up at blocks 8-12 are the infectives, initially numbering but 100 at each’
point. And way down at blocks 1-3 are the cops, initially at token levels of 25 K

per point. We track the spatial evolution of each group over 50 time intervals in.
figure 5.4.

FIGURE 5.4 Drug War Reaction-Diffusion Model

The susceptible, infective, and police evolutions are shown in the left, middle,

and right graphs, respectively.[197] At ¢, the levels and positions are as noted above.
How do things evolve?

A SPATIO-TEMPORAL STORY

Seeing that there is a large concentration of susceptibles and few cops down the
street from them, the infectives cross-diffuse to the center. Many susceptibles are
converted into infectives, so the susceptible population falls and the infective one
rises, now swelling with “converts” into the middle blocks. This bulging problem,

[106]Here, the values are: 8 = 0.005, u = 0.5, v = 0.03, £ = 0.0001, b = 1.0, 655 = 0.03, 6,1 = 0.01,
érr = 0.02, 6y = 0.006, 651 = 0.001, &7, = 0.006.

[197) These were generated in Mathematica (Wolfram, 1991) using the Numerical Method of Lines.
I thank Robert Axtell for his assistance.
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| FIGURE 5.5 Drug War Reaction-Diffusion Model: Overhead View
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however, inspires a reaction, in the form of dramatic increases in p;)liicei; whto cfrzsii;
! .
i ir initi d of the street into the heart o
diffuse from their initial barracks at the en f the :
problem in the center. This surge in police—evident in the peak of the': rfhtérfosz
graph—Iliterally scoops away the infective mound. By t = 40, thfare is har 1,]1
problem. Hence, as before, the police “wither away” after that point, leaving the
susceptibles to continue in their untroubled diffus ion, as shown. -
An overhead view of the same process is offered in figure 5.5. Here, the hig :
the numbers ‘at a point, the lighter the shade. We can clearly see the surged o
pushers, followed by the police response, the hollowing-out of the pusher mound in
ter, and the withering away of the police. . .
e (:nn:rnﬁneat reaction-diffusion model allows us to generate a plausible spatio-
temporal story of basic interest. (108l

(108]My point here is that there exist parameter values and in.itial conditions undefr :1?11(:1}-1 est‘illc:
spatio-temporal story emerges. A seperate study would examine the robustness of this

- under a wide range of parameter and initial values.



