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Abstract

We investigate several functions related to the r-color off-diagonal van der Waerden numbers w(m1, . . . ,

mr), where w(m1, . . . ,mr) is the minimal integer n such that every r-coloring of {1, 2, . . . , n} admits

an mi-term arithmetic progression with all terms of color i for some i ∈ {1, 2, . . . , r}. We start by

giving a new lower bound for these related numbers. Next, the exact values and bounds of numbers

related to quasi-progressions and mixed quasi-progression-van der Waerden numbers are given. Then,

inspired by the success of graph Gallai-Ramsey theory and rainbow arithmetic progressions, we intro-

duce the concept of Gallai-van der Waerden numbers, and obtain some exact values and bounds for

these numbers, some of which are derived by the probabilistic method and the Lovász Local Lemma.
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1 Introduction and Brief Survey of Previous Results

Ramsey-type problems were introduced in 1930. This subject has been a hot topic in mathematics for

decades now due to their intrinsic beauty, wide applicability, and overwhelming difficulty despite somewhat

misleadingly simple statements; see [13] and [28].

This section introduces background and related results of the Ramsey-type problems we will be inves-

tigating.

1.1 Monochromatic Arithmetic Progressions and van der Waerden’s Theorem

An `-term arithmetic progression (simply, `-AP) is a set S such that S = {a + id : 0 ≤ i < `} =

{a, a+ d, a+ 2d, . . . , a+ (`− 1)d} for some integers a, d, and d 6= 0.
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In 1927, B. L. van der Waerden [15] published a proof of the following unexpected result.

Theorem 1.1 ([15]). If the positive integers are partitioned into two classes, then at least one of the

classes must contain arbitrarily long arithmetic progressions.

There are two rather harmless looking modifications we make in the statement of van der Waerden’s

theorem, both of which have a major impact on the proof. The statement is as follows, where we introduce

the standard notation [1, n] = {1, 2, . . . , n}:

Theorem 1.2. (van der Waerden’s Theorem) For all r, `, there exists n0 so that, for n ≥ n0, if

[1, n] is r-colored there exists a monochromatic `-AP.

Definition 1.3. For all positive integers r and `, the van der Waerden number w(r; `) is defined as the

minimal integer such that for n ≥ w(r; `), if [1, n] is r-colored there exists a monochromatic `-AP.

Definition 1.4. For all positive integers r and m1, . . . ,mr, the off-diagonal van der Waerden number

w(m1, . . . ,mr) is defined as the minimal integer such that for n ≥ w(m1, . . . ,mr), if [1, n] is r-colored,

then there exists an mi-AP for some color i, where 1 ≤ i ≤ r.

If m1 = m2 = · · · = mr = m, then we have w(m1, . . . ,mr) = w(r;m). For more details on arithmetic

progressions and van der Waerden numbers, we refer to the book [25] by Landman and Robertson and

some papers [4, 2, 5, 7].

Recent progress has been made concerning lower bounds on van der Waerden numbers. In particular,

Kozik and Shabanov [22] obtained the following lower bound.

Theorem 1.5. [22] There exists a positive constant c such that for every r ≥ 2 and k ≥ 3, we have

w(r; k) > crk−1.

More recently, Green [17] deduced a non-polynomial lower bound for w(3, k), which was widely believed

to have polynomial growth (perhaps quadratic, even).

Theorem 1.6. [17] There exists a constant c > 0 such that for k sufficiently large,

w(3, k) > k
c
(

log k
log log k

)1/3
.

1.2 Quasi-progressions

Related to arithmetic progressions, but with less stringent criteria, are quasi-progressions.

Definition 1.7. Let k and s be integers with k ≥ 1 and s ≥ 0. A k-term quasi-progression of diameter

s is a sequence of positive integers {x1, . . . , xk} for which there exists a positive integer d such that

d ≤ xi − xi−1 ≤ d + s for i = 2, . . . , k. We call the integer d a low-difference for the quasi-progression

X = {x1, . . . , xk}. We say that X is a (k, s, d)-QP.
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Since quasi-progressions of diameter 0 are arithmetic progressions, and the set of quasi-progressions

of diameter s is a subset of those of diameter t for any t ≥ s, Theorem 1.1 allows us to make the following

definition.

Definition 1.8. For positive integers s and k, denote by Q(k, s) the least positive integer n such that

for every 2-coloring of [1, n] there is a monochromatic (k, d, s)-QP for some low-difference d. When we

are not concerned with the low-difference, as is the case here, we will refer to the quasi-progressions as

(k, s)-QPs.

Landman [23] gave a lower bound for Q(k, k− i) in terms of k and i that holds for all k > i ≥ 1 along

with upper bounds for Q(k, s) when s ≥ d2k/3e. In particular, Landman showed that Q(k, d2k/3e) =
43
324k

2(1 + o(1)). Exact formulae for Q(k − 1, k) and Q(k − 2, k), a table of computer-generated values of

Q(k, s) for small k and s, and several conjectures can also be found in [23].

For more details on the quasi-progressions, we refer to the book [25] and papers [5, 20, 21, 23, 24].

Definition 1.9. For positive integers s, r and k, denote by Q(r; k, s) the least positive integer n such

that for every r-coloring of [1, n] there is a monochromatic k-term quasi-progression of diameter s.

The following result is immediate by definition.

Theorem 1.10. Let r, k, n be integers with r ≥ 2, k ≥ 2, and s ≥ 0. Then Q(r; k, s) ≤ Q(r; k, 0) =

w(r; k), so that monochromatic (k, s)-QPs exist under any r-coloring of the positive integers.

We will also be investigating the behavior of quasi-progressions and arithmetic progressions together.

Definition 1.11. For positive integers k and m, the mixed quasi-progression-van der Waerden number

QW(m; k, s) is defined as the minimum integer such that for n ≥ QW(m; k, s), if [1, n] is 2-colored there

exists a monochromatic m-AP of the first color or a monochromatic (k, s)-QP of the second color.

Existence of QW(m; k, s) is also implied by van der Waerden’s Theorem.

For more than 2 colors, we have the following definition, with existence also implied by van der

Waerden’s Theorem.

Definition 1.12. For positive integers a < r, let m1, . . . ,mr be integers with 3 ≤ m1 ≤ · · · ≤ ma and

3 ≤ ma+1 ≤ · · · ≤ mr. Let s be a nonnegative integer. The mixed r-color quasi-progression-van der

Waerden number, denoted QW(m1, . . . ,ma;ma+1, . . . ,mr; s) is the minimal integer n such that every

r-coloring of [1, n] admits either an mi-AP of color i for some i ∈ [1, a] or a monochromatic (mj , s)-QP

of color j for some j ∈ [a+ 1, r].

1.3 Gallai-Ramsey Numbers and Rainbow Arithmetic Progressions

Colorings of the edges of complete graphs that contain no rainbow triangle have a very interesting and

somewhat surprising structure. In 1967, Gallai [16] first examined this structure under the guise of
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transitive orientations. The result was reproven in [19] in the terminology of graphs and can also be

traced to [9].

If G and H are two graphs, we write F −→ (G,H) to denote that G or H is a monochromatic subgraph

of G in every 2-coloring of the edges of F . The Ramsey number r(G,H) of a graph F is defined as

r(G,H) = min{n : Kn −→ (G,H)}. If G and H are two graphs, we write F
grk−→ (G,H) to denote that G

is a rainbow subgraph or H is a monochromatic subgraph of F in every k-coloring of the edges of F . The k-

colored Gallai-Ramsey number grk(G,H) of a graph F is defined as grk(G,H) = min{n : Kn
grk−→ (G,H)}.

We refer the interested reader to [29] for a dynamic survey of small Ramsey numbers and [12] for a

dynamic survey of rainbow generalizations of Ramsey theory, including topics like Gallai-Ramsey numbers.

In [14], Jungić et al. studied a rainbow counterpart of van der Waerden’s theorem: Given positive

integers r and `, what conditions on r-colorings of [1, n] guarantee the existence of a rainbow `-AP? The

anti-van der Waerden number aw(S, k) is the smallest r such that any r-coloring (that uses every color at

least once) of S contains a rainbow k-term arithmetic progression. Note that this tautologically defines

aw(S, k) = |S|+ 1 whenever |S| < k, and this definition retains the property that there is a coloring with

aw(S, k)−1 colors that has no rainbow k-AP. Several important results on the existence of rainbow 3-APs

implying information about aw([1, n], 3) and aw(Zn, 3) have been established by Jungić, et al. [14]. For

more details on the rainbow AP, we refer to [1, 8, 10, 14, 30].

Combining the above two concepts, we introduce a Gallai-Ramsey Version of van der Waerden’s

Theorem.

When dealing with rainbow structures, we need to be careful in certain situations regarding the number

of colors truly used in a coloring. As such, we make use of the following definition from [3].

Definition 1.13. An r-coloring is exact if all colors are used at least once.

The following corollary, following from Theorem 1.2, can be regarded as the Gallai-Ramsey version of

van der Waerden’s Theorem.

Corollary 1.14. For all r, k, `, there exists n0 so that, for n ≥ n0, every exact r-coloring of [1, n] admits

either a rainbow k-AP or a monochromatic `-AP.

As a generalization of the classical van der Waerden numbers, we propose the following two new

concepts.

Definition 1.15. For all positive integers r, k, `, the Gallai-van der Waerden number (simply, GW num-

ber) GW(r; k, `) is defined as the least integer so that, for all n ≥ GW(r; k, `), every exact r-coloring of

[1, n] admits either a rainbow k-AP or a monochromatic `-AP.

Remark 1.16. We need to be careful when applying Definition 1.15. For example, if we consider

GW(3; 3, 3) we see that any exact 3-coloring of [1, 3] admits a rainbow 3-AP. However, the exact 3-coloring

of [1, 4] with the colors of 2 and 3 being the same admits no rainbow nor monochromatic 3-AP.
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We may also consider the situation where the colorings need not be exact. Since r-colorings of [1, n]

may be partitioned into exact colorings and colorings using less than r colors, the existence of the following

numbers holds.

Definition 1.17. For all positive integers r, k, `, define GW′(r; k, `) to be the least integer so that, for

n ≥ GW′(r; k, `), if [1, n] is r-colored, then there exists either a rainbow k-AP or a monochromatic `-AP.

Remark 1.18. Note that GW′(r; k, `) ≤ max{GW(i; k, `) : 1 ≤ i ≤ r}.

2 Improved Bounds for Off-diagonal van der Waerden Numbers

We can derive a lower bound by the result in [22].

Theorem 2.1. There exists a positive constant c such that for every r ≥ 2 and m1 ≥ 3, if mi+1 −∑i
j=1mj ≥ 3 for 1 ≤ i ≤ r − 2 and mr ≥

∑r−1
j=1 mj, then

w(m1, . . . ,mr) ≥
r−2∑
i=1

c(r − i)(mi+1−
∑i

j=1 mj) + crm1−1 +mr −
r−1∑
j=1

mj + 1.

Proof. Define the intervals

L =
[
crm1−1 + 1, crm1−1 + c(r − 1)(m2−m1)

]
Ms =

[
s∑

i=1

c(r − i)(mi+1−
∑i

j=1 mj) + crm1−1 + 1,

s+1∑
i=1

c(r − i)(mi+1−
∑i

j=1 mj) + crm1−1

]
, 1 ≤ s ≤ r − 3

N =

r−2∑
i=1

c(r − i)(mi+1−
∑i

j=1 mj) + crm1−1 + 1,

r−2∑
i=1

c(r − i)(mi+1−
∑i

j=1 mj) + crm1−1 +mr −
r−1∑
j=1

mj + 1

.
From Theorem 1.5, for any number of colors s, there exists an s-coloring of [1, csmi−1] containing no

monochromatic mi-AP. Accordingly, color the above-defined intervals using the following colors with a

coloring that avoids monochromatic mi-APs. Note that we are being loose with the constant c in the

above intervals; however, clearly there exists a positive constant c that can work uniformly for all appeals

the Theorem 1.5 (e.g., the minimum c used over all applications of Theorem 1.5).

• Color [1, crm1 ] with colors 1, 2, . . . , r avoiding monochromatic m1-APs;

• Color L with colors 2, 3, . . . , r avoiding monochromatic (m2 −m1)-APs;

• For each s ∈ [1, r − 3], color Ms with colors s + 2, s + 3, . . . , r avoiding monochromatic

(ms+2 −
∑s+1

j=1mj)−APs;

• Color all mr −
∑r−1

j=1 mj elements of N with color r.

By construction, there is no monochromatic mi-AP of color i for any i ∈ [1, r], thereby proving the

bound.
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3 Quasi-progressions

The following two results can be easily obtained by the methods in [23].

Theorem 3.1. Let r, k, s be integers with r ≥ 2, k ≥ 2, and s ≥ 1. Then

Q(r; k, s) ≥ r(k − 1) + 1.

Proof. Consider the r-coloring χ : [1, rk − r] −→ {0, 1, . . . , r − 1} defined by

χ([(i− 1)k − i+ 2, ik − i]) = i− 1,

where 1 ≤ i ≤ r. This coloring admits no monochromatic k-element set. In particular, it yields no k-term

monochromatic quasi-progression of diameter s. Therefore, we have Q(r; k, s) ≥ r(k − 1) + 1.

Theorem 3.2. Let r and k be integers with r ≥ 2 and k ≥ 2. Then

Q(r; k, (r − 1)(k − 1)) ≤ r(k − 1) + 1.

Proof. Let χ be an arbitrary r-coloring of [1, r(k − 1) + 1]. Clearly, there is some k-element set X =

{x1, . . . , xk} where x1 < x2 < · · · < xk that is monochromatic under χ. If for some j, 2 ≤ j ≤ k, we have

xj − xj−1 > (r − 1)(k − 1) + 1, then

xk − x1 =
k∑

i=2

(xi − xi−1) > (r − 1)(k − 1) + 1 + (k − 2) = r(k − 1),

which is impossible. Thus, X is a monochromatic (k, (r− 1)(k− 1), 1)-progression, since 1 ≤ xi − xi−1 ≤
(r − 1)(k − 1) + 1 for 2 ≤ i ≤ k. This shows that Q(r; k, (r − 1)(k − 1)) ≤ r(k − 1) + 1.

The following corollary is immediate.

Corollary 3.3. Let r, k, s be positive integers with r ≥ 2 and s ≥ (r − 1)(k − 1). Then

Q(r; k, s) = r(k − 1) + 1.

For Q(r; k, 1), we can give a lower bound better than in Theorem 3.1.

Theorem 3.4. Let r, k, n be positive integers with r ≥ 2, k ≥ 2. Then

Q(r; k, 1) ≥ r(k − 1)2 + 1.

Proof. Define the r-coloring χ of [1, r(k − 1)2] by the string

0 · · · 0︸ ︷︷ ︸
k−1

1 · · · 1︸ ︷︷ ︸
k−1

. . . (r − 1) · · · (r − 1)︸ ︷︷ ︸
k−1

0 · · · 0︸ ︷︷ ︸
k−1

1 · · · 1︸ ︷︷ ︸
k−1

(r − 1) · · · (r − 1)︸ ︷︷ ︸
k−1

. . . 0 · · · 0︸ ︷︷ ︸
k−1

1 · · · 1︸ ︷︷ ︸
k−1

(r − 1) · · · (r − 1)︸ ︷︷ ︸
k−1
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where each of the (r − 1)(k − 1)-element blocks

00 · · · 0︸ ︷︷ ︸
k−1

11 · · · 1︸ ︷︷ ︸
k−1

. . . (r − 1)(r − 1) · · · (r − 1)(r − 1) · · · (r − 1)︸ ︷︷ ︸
k−1

appears k− 1 times. To prove this theorem, it suffices to show that under this coloring there is no k-term

monochromatic quasi-progression of diameter 1.

By way of contradiction, let m = r(k − 1)2, and assume that X = {x1, . . . , xk} ⊆ [1,m] is a quasi-

progression of diameter 1 that is a monochromatic under χ. By the symmetry of χ, without loss of

generality, we may assume that χ(X) = 1. Since each monochromatic block of color 1 has k− 1 elements,

there is some i, 2 ≤ i ≤ k, where xi and xi−1 belong to two different such blocks. For this i, we have

xi−xi−1 ≥ (r− 1)(k− 1) + 1. Since X has diameter 1, this implies that X has a low-difference of at least

k− 1. Thus, each of the blocks of k− 1 consecutive 1’s contains no more than one member of X. Hence,

X must have length at most k − 1, a contradiction.

In the following, we obtain a lower bound for some specific instances of Q(r; k, s).

Theorem 3.5. Let r, k, n be positive integers with r ≥ 2, (j − 2)(k− 1) + 1 ≤ i < (j − 1)(k− 1) + 1, and

2 ≤ j ≤ r −
⌊
r−1

2

⌋
. Let m = 1 +

⌊
k−2

i−(j−2)(k−1)

⌋
. Then

Q

(
r; k,

(
r − 1−

⌊
r − 1

2

⌋)
(k − 1) +

⌊
r − 1

2

⌋
y + 1− i+ (j − 2)(k − 1)

)
≥ r

(⌊
k − 1

m

⌋
(k − 1) + y

)
+1,

where y = (i− (j − 2)(k − 1))
(
(k − 1)−m

⌊
k−1
m

⌋)
.

Proof. Let

s = r

(⌊
k − 1

m

⌋
(k − 1) + y

)
.

Define the r-coloring χ of [1, s] by the string

(⌊
r − 1

2

⌋
+1

)y(⌊
r − 1

2

⌋
+2

)y
. . . (r − 1)y

(
0k−11k−1. . . (r − 1)k−10k−11k−1. . . (r − 1)k−10k−11k−1. . . (r − 1)k−1

)
0y1y . . .

⌊
r − 1

2

⌋y
,

where, within the parentheses, each of the blocks 0k−11k−1 . . . (r − 1)k−1 occurs bk−1
m c times. Note that

this is, in fact, a string of length s. It is sufficient to show that, under χ, [1, s] contains no monochromatic

k-term quasi-progression of diameter (r−1−
⌊
r−1

2

⌋
)(k−1)+

⌊
r−1

2

⌋
y+1− i. We proceed by contradiction.

Assume that X = {x1, . . . , xk} ⊆ [1, s] is a quasi-progression of diameter (r − 1 −
⌊
r−1

2

⌋
)(k − 1) +⌊

r−1
2

⌋
y + 1 − i that is monochromatic under χ. By the symmetry of χ, we may assume that χ(X) = 1.
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Since mbk−1
m c ≥ k −m, it follows that

y = (i− (j − 2)(k − 1))

(
k − 1−m

⌊
k − 1

m

⌋)
≤ (i− (j − 2)(k − 1))((k − 1)− (k −m))

= (i− (j − 2)(k − 1))

⌊
k − 2

i− (j − 2)(k − 1)

⌋
≤ k − 2.

Hence, there is no block of more than k − 1 consecutive 1s. Thus, for some j ∈ {2, 3, . . . , k}, we have

xj −xj−1 ≥ (r− 1−
⌊
r−1

2

⌋
)(k− 1) +

⌊
r−1

2

⌋
y+ 1, which implies that X can not have a low-difference that

is less than i− (j − 2)(k − 1).

Since the low-difference of X is at least i−(j−2)(k−1), the first block of 1s (having length y), contains

at most y
i−(j−2)(k−1) = k − 1 −m

⌊
k−1
m

⌋
members of X. Similarly, in any block of k − 1 consecutive 1s,

there are at most 1 + b k−2
i−(j−2)(k−1)c = m members of X. There are bk−1

m c blocks of k − 1 consecutive 1s,

we see that X has at most

k − 1−m
⌊
k − 1

m

⌋
+m

⌊
k − 1

m

⌋
= k − 1

elements, a contradiction.

We also have the following lower bound for Q (r; k, (r − 1)(k − 1) + 1− i).

Theorem 3.6. Let r, k, i be positive integers with r ≥ 2, and let m = 1 + bk−2
i c. Then

Q (r; k, (r − 1)(k − 1) + 1− i) ≥
⌊
k − 1

m

⌋
(rk − r − 2m) + 2i(k − 1) + 1 .

Proof. Let

s =

⌊
k − 1

m

⌋
(rk − r − 2im) + 2i(k − 1).

Define the r-coloring χ of [1, s] by the string

(r − 1)y
(

0k−11k−1 . . . (r − 1)k−10k−11k−1 . . . (r − 1)k−10k−11k−1 . . . (r − 1)k−1
)

0y

where within the parentheses each of the blocks 0k−11k−1 . . . (r−1)k−1 occurs bk−1
m c times, and where y =

i
(

(k − 1)−m
⌊

(k−1)
m

⌋)
. Note that this is, in fact, a string of length s. It is sufficient to show that, under

χ, the interval [1, s] contains no monochromatic k-term quasi-progression of diameter (r−1)(k−1)+1− i.
We proceed by contradiction.

Assume that X = {x1, . . . , xk} ⊆ [1, s] is a quasi-progression of diameter (r− 1)(k− 1) + 1− i that is

monochromatic under χ. By the symmetry of χ, we may assume that χ(X) = 1. Since mbk−1
m c ≥ k−m,

it follows that

y = i

(
k − 1−m

⌊
k − 1

m

⌋)
≤ i((k − 1)− (k −m)) = i

⌊
k − 2

i

⌋
≤ k − 2.
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Hence, there is no block of more than k − 1 consecutive 1s. Thus, for some j ∈ {2, 3, . . . , k}, we have

xj − xj−1 ≥ (r − 1)(k − 1) + 1, which implies that X can not have a low-difference that is less than i.

Since the low-difference of X is at least i, the first block of 1s (having length y), contains at most
y
i = k − 1 −m

⌊
k−1
m

⌋
members of X. Similarly, in any block of k − 1 consecutive 1s, there are at most

1 + bk−2
i c = m members of X. There are bk−1

m c blocks of k− 1 consecutive 1s, we see that X has at most

k − 1−m
⌊
k − 1

m

⌋
+m

⌊
k − 1

m

⌋
= k − 1

elements, a contradiction.

The following corollary is immediate from Theorem 3.6.

Corollary 3.7. Let r, k, i be positive integers with r ≥ 2. The following hold.

(1) If k ≡ 0 (mod i), then Q (r; k, (r − 1)(k − 1) + 1− i) ≥ (ir + 2i− r)(k − 1)− 2ki+ 2k + 1.

(2) If k ≡ 1 (mod i), then Q (r; k, (r − 1)(k − 1) + 1− i) ≥ ir(k − 1) + 1.

The last theorem allows us to provide an equality for certain instances of Q(r; k, s).

Theorem 3.8. Let r, k be positive integers with r ≥ 2. Then

Q (r; k, (r − 1)(k − 1)) = r(k − 1) + 1

Proof. From Theorem 3.6 (or Theorem 3.1) we obtain Q (r; k, (r − 1)(k − 1)) ≥ r(k − 1) + 1. To obtain

a matching upper bound, notice that any k integers in [1, r(k − 1) + 1] form a (k, (r − 1)(k − 1), 1)-QP.

By the pigeonhole principle, there exist at least k integers of the same color under any r-coloring of

[1, r(k − 1) + 1].

Theorem 3.9. Let r, k, n be positive integers with r ≥ 2. Then

Q (r; k, (r − 1)(k − 1)− 1) =

{
(r + 2)(k − 1)− 1 if k is even,

2r(k − 1) + 1 if k is odd.

Proof. The lower bound follows from Corollary 3.7 with i = 2. To obtain the upper bounds, let χ :

Z+ −→ {0, 1, . . . , r− 1} be any r-coloring. We will show that if k is even, then there is a monochromatic

k-term quasi-progression with diameter (r − 1)(k − 1) − 1 in [1, (r + 2)(k − 1) − 1], and that if k is odd

then there exists such a progression in [1, 2r(k − 1) + 1]. For each case we assume, for a contradiction,

that no such monochromatic quasi-progression exists.

To avoid a monochromatic k-term quasi-progression with diameter (r− 1)(k− 1)− 1, we see that the

number of elements of each color in [1, r(k−1)] must be exactly k−1. Noting that quasi-progressions are

translation invariant, we see that any interval of length r(k−1) must contain exactly k−1 elements of each

color. Comparing the colors of integers of [1, r(k−1)] with [2, r(k−1)+1] we see that χ(1) = χ(r(k−1)+1).

Comparing [2, r(k − 1) + 1] with [3, r(k − 1) + 2] we obtain χ(2) = χ(r(k − 1) + 1. Continuing in this
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fashion, we deduce that [1, 2k − 1] and [r(k − 1) + 1, (r + 2)(k − 1) − 1] are colored in exactly the same

manner. We will use this fact in both cases.

Case 1. k is even.

Without loss of generality, we assume that χ(r(k−1)) = r−1 and that for some a ∈ [1, k−1] we have

χ(r(k − 1) + a) = 0. Hence, we can conclude that [1, a− 1] (which may be empty) contains only integers

of color r − 1 while χ(a) = 0. If a < k − 1 then there exists an integer in [a + 1, r(k − 1) − 1] of color

r− 1. From this we can conclude that the k− 1 integers in [1, r(k− 1)] of color r− 1 form a (k− 1)-term

quasi-progression with low-difference 2 and diameter (r−1)(k−1)−1. Consequently, any integer of color

r − 1 in [r(k − 1) + 1, (r + 2)(k − 1) − 1] when appended to this (k − 1)-term quasi-progression would

create a monochromatic k-term quasi-progression with low-difference 2 and diameter (r − 1)(k − 1)− 1.

If a > 1, then such an integer exists. Hence, if a < k − 1 then we must have a = 1.

We finish this case by considering two subcases: a = 1 and a = k − 1.

Subcase i. a = 1: χ(1) = χ(r(k − 1) + 1) = 0

To avoid a monochromatic k-term quasi-progression with diameter (r − 1)(k − 1) − 1, all integers of

color 0 in [1, r(k−1)] must form the interval [1, k−1]. Consequently, [r(k−1) + 1, (r+ 1)(k−1)] contains

only integers of color 0. We are done with this subcase by noting that the progression{
2i− 1 : 1 ≤ i ≤ k

2

}
∪
{
r(k − 1) + 2i− 1 : 1 ≤ i ≤ k

2

}
is a monochromatic (of color 0) quasi-progressions with low-difference 2 and diameter (r − 1)(k − 1)− 1

contained in [1, (r + 2)(k − 1)− 1].

Subcase ii. a = k − 1: χ(k − 1) = χ((r + 1)(k − 1)) = 0.

(This subcase is essentially the same as Subcase i translated by k − 2.) To avoid a monochromatic

k-term quasi-progression with diameter (r − 1)(k − 1)− 1, all integers of color 0 in [k − 1, (r + 1)(k − 1)]

must form the interval [k − 1, 2k − 3]. Consequently, [(r + 1)(k − 1), (r + 2)(k − 1) − 1] contains only

integers of color 0. We are done with this subcase by noting that the progression{
k + 2i− 3 : 1 ≤ i ≤ k

2

}
∪
{

(r + 1)(k − 1) + 2i− 2 : 1 ≤ i ≤ k

2

}
is a monochromatic (of color 0) quasi-progressions with low-difference 2 and diameter (r − 1)(k − 1)− 1

contained in [1, (r + 2)(k − 1)− 1].

Case 2. k is odd. Each of [1, r(k− 1)] and [r(k− 1) + 1, 2r(k− 1)] must contain exactly k− 1 integers of

each color. Without loss of generality, we may assume that χ(2r(k−1)+1) = 0. As argued in Case 1, this

implies that [r(k−1)+1, (r+1)(k−1)] contains only integers of color 0. In turn, since χ(r(k−1)+1) = 0,

we see that [1, k − 1] contains only integers of color 0. We are done with this case by noting that{
2i : 1 ≤ i ≤ k − 1

2

}
∪
{
r(k − 1) + 2i : 1 ≤ i ≤ k − 1

2

}
∪ {r(k − 1) + 1}

is a monochromatic (of color 0) quasi-progressions with low-difference 2 and diameter (r − 1)(k − 1)− 1

contained in [1, 2r(k − 1) + 1].
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3.1 Mixed Quasi-progression-van der Waerden Numbers

We now investigate the mixed quasi-progression-van der Waerden numbers (see Definitions 1.11 and 1.12).

We start with a simple result.

Theorem 3.10. For any positive integers k, r, and s with s ≥ r − 1, we have QW(k; 2, 2, . . . , 2; s) =

k + r − 1, where the number of 2s is r − 1.

Proof. Let 0, 1, . . . , r− 1 be our colors, with color 0 tagged to the quasi-progression. First, note that any

r-coloring of [1, k+r−2] with exactly k−1 elements of color 0 and exactly one element of each of the other

r−1 colors avoids monochromatic 2-APs and k-term quasi-progressions of color 0 with diameter s for any

positive s. Hence, QW(k; 2, 2, . . . , 2; s) > k+ r−2. Next, consider an arbitrary r-coloring of [1, k+ r−1].

If the interval contains at least 2 elements of any color other than 0 then we have a monochromatic 2-AP

and are done. Hence, we have at least k elements of color 0, with the largest possible difference between

any 2 consecutive blue elements being r. Hence, these k blue elements form a k-term quasi-progression

with low-difference 1 and diameter s for any integer s ≥ r − 1.

Once we consider mixed quasi-progression-van der Waerden numbers with true arithmetic progressions

(i.e., of length 3 or more), the situation becomes much more difficult and is related to many previously-

studied functions. We introduce one such function next, which has its genesis in a paper by Rabung [27]

and whose existence is implied by van der Waerden’s theorem.

Definition 3.11. Let k and m be positive integers. We denote by Γ(k;m) the minimal integer n such

that any sequence a1 < a2 < · · · < an of n integers satisfying aj − aj−1 ≤ m for 2 ≤ j ≤ n contains a

k-AP.

As we can see, Γ(k;m) is only concerned with the arithmetic progressions, while the considered mixed

quasi-progression-van der Waerden numbers further consider the quasi-progressions. We have seen, thus

far, that numbers associated with monochromatic quasi-progressions tend to have polynomial growth

when the diameter is not too restrictive (it is known, however, that Q(k, 1) is exponential; see [25]). On

the other hand, it is known that Γ(k;m) always has at least exponential growth. This was shown by

Brown and Hare in [6] using the Lovász Local Lemma, a lemma which fundamentally improves bounds

in probabilistic arguments in many instances. Hence, it is natural to investigate a lower bound for

QW(k;m; s) by using the Lovász Local Lemma [11]. To state the lemma, we have need of a definition.

Definition 3.12. Let A1, . . . , An be events in a probability space Ω. We say that a graph with vertex

set {A1, A2, . . . , An} is a dependency graph precisely when, for all i 6= j we have that

{Ai, Aj} is an edge ⇐⇒ Ai and Aj are dependent events.

Theorem 3.13. (Lovász Local Lemma [11]) Let A1, . . . , An be events in a probability space Ω with

dependence graph Γ. Suppose that there exists x1, . . . , xn with 0 < xi ≤ 1 such that

Pr[Ai] < (1− xi)
∏
{i,j}∈Γ

xj , 1 ≤ i ≤ n.
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Then Pr[
∧

iAi] > 0.

A slightly more convenient form of the local lemma results from the following observation. Set

yi =
1− xi
xPr[Ai]

,

so that

xi =
1

1 + yi Pr[Ai]
.

Since 1 + z ≤ exp(z), we have the following consequence.

Corollary 3.14. [13] Suppose that A1, . . . , An are events in a probability space having dependence graph

Ω, and there exist positive y1, y2, . . . , yn satisfying

log yi >
∑
{i,j}∈Γ

yj Pr[Aj ] + yi Pr[Ai],

for 1 ≤ i ≤ n. Then Pr[
∧
Ai] > 0.

We will have need of the following results when applying Corollary 3.14.

Lemma 3.15. The number of m-APs in [1, N ] that contain x is at most N − 1.

Proof. Let x ∈ [1, N ] be fixed. Let A1 = {x, x+ d, x+ 2d, . . . , x+ (m− 1)d} be the m-AP such that x is

in the first position of this m-AP. If x is in the first position of a m-AP, then the number of m-APs in

[1, N ] that contain x is at most (N − x)/(m − 1). Similarly, if x is in the last position of a m-AP, then

the number of m-APs in [1, N ] that contain x is at most (x − 1)/(m − 1). For each i (2 ≤ i ≤ m − 1),

let Ai = {x− (i− 1)d, x− (i− 2)d, . . . , x, x+ d, . . . , x+ (m− i)d} be the m-AP such that x is in the i-th

position of this m-AP. Note that x − (i − 1)d ≥ 1 and x + (m − i)d ≤ N . Then d ≤ min{x−1
i−1 ,

N−x
m−i } for

each i (2 ≤ i ≤ m− 1), and hence the number of m-APs in [1, N ] that contain x is at most

f(x) =
m−1∑
i=2

min

{
x− 1

i− 1
,
N − x
m− i

}
+
N − x
m− 1

+
x− 1

m− 1
=

m−1∑
i=2

min

{
x− 1

i− 1
,
N − x
m− i

}
+
N − 1

m− 1
.

Note that f(x) ≤ N − 1.

Lemma 3.16. The number of k-term quasi-progressions of diameter s in [1, N ] that contain a given

x ∈ [1, N ] is less than (s+ 1)k−1N .

Proof. Let d be the common difference of a given k-AP and consider the number of k-term quasi-

progressions of diameter s with low-difference is d. This is at most

k−1∑
i=1

(
k − 1

i

)
si = (s+ 1)k−1 − 1.

12



To see this, from the k − 1 gaps between elements of the given k-AP, choose i of them to be different

from d. This difference is the range of the diameter, so that instead of d, these gaps become one of

d + 1, d + 2, . . . , d + s. We adjust the gaps while making sure to fix x. Summing over possible values of

i, we see that for each k-AP in [1, N ] that contains x, we have less than (s + 1)k−1 quasi-progressions

of length k and diameter s in [1, N ] that contain x. Since there are less than N such k-APs, the result

follows.

We now present a lower bound on the mixed quasi-progression-van der Waerden numbers. As men-

tioned in the first section, it was recently shown that the van der Waerden number w(3, k) grows faster

than any polynomial. Before this result by Green [17], the best-known lower bound was of the order(
k

log k

)2
and many conjectured that k2 may have been the correct order of growth. This result is a partic-

ular case of a result by Li and Shu [26], which has a very similar form to our next theorem. The fact that

we can achieve this same growth rate for the mixed quasi-progression-van der Waerden numbers perhaps

offers some insight into why (but not how) Green was able to improve the bound on w(3, k). The proof

of the next theorem is a minor modification of the proof found in [26].

Theorem 3.17. Let k,m, s be positive integers. For k and s fixed and m sufficiently large, there exists a

constant c = c(k, s) > 0 such that

QW(m; k, s) ≥ c
(

m

logm

)k−1

.

Proof. Let N = c
(

m
logm

)k−1
, with c to be determined later. Color each integer of [1, N ] either red or

blue. We will let the color blue be tagged to the m-AP and the color red be tagged to the k-QP. Let the

probability that i ∈ [1, N ] is colored red be

p =

(
s+ 1 + s+2

k

)
k logm

(s+ 1)m
.

For each (k, s)-QP S in [1, N ], let AS denote the event that S consists of only red elements. We refer

to this event as type A. For each m-AP T in [1, N ], let BT denote the event that T is monochromatically

blue. We refer to this event as type B. We will use

Pr[BT ] = (1− p)m =

(
1−

(
s+ 1 + s+2

k

)
k logm

(s+ 1)m

)m

≈ e−(k+ s+2
s+1) logm =

(
1

m

)k+ s+2
s+1

.

Consider the dependency graph on all events of types A and B. Let NAA denote the number of edges

from a given type A vertex to other type A- vertices. Define NAB to be the number of edges from a given

type A vertex to type B vertices. Define NBA and NBB analogously.

From Lemma 3.15, the number of m-APs in [1, N ] that contain x is less than N .

Applying these, we now bound NAA, NAB, NBA, and NBB. For NAA, fix a k-term quasi-progression

of diameter s, say A = {a1, a2, . . . , ak}. Since any other (k, s)-QP can only intersect A in one of k terms,
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we apply Lemma 3.16, noting only k choices for x to obtain NAA ≤ k(s + 1)kN . Similarly, we obtain

NBA ≤ m(s + 1)kN as there are only m choices for x in Lemma 3.16. Using Lemma 3.15, we have

NAB ≤ kN and NBB ≤ mN .

To apply Corollary 3.14, it suffices to determine a, b > 0 such that

log a ≥ ak(s+ 1)kNpk + bkN(1− p)m

and

log b ≥ am(s+ 1)kNpk + bmN(1− p)m

are both satisfied.

Consider

b =
1

mN(1− p)m
and a = b

k
m .

We have log a = k
m log b so it suffices to show that

log b ≥ am(s+ 1)kNpk + bmN(1− p)m,

which by definition of b reduces to showing

log b ≥ b
k
mm(s+ 1)kNpk + 1.

We have b ≈ m
s+2
s+1 (logm)k−1 so that log b >

(
1 + 1

s+1

)
logm. Since k is fixed, for m sufficiently large

we have b
k
m < 2. Using this, along with k ≥ 3, by taking c <

(
1

(4s+5)k

)k
we see that log b ≥ b

k
mm(s +

1)kNpk + 1 holds, finishing the proof.

We now present a lower bound on the mixed quasi-progression-van der Waerden numbers for an

arbitrarily number of colors. This is a generalization of the result in Theorem 3.18. We use the notation

from Definition 1.15.

Theorem 3.18. For positive integers a < r, let m1, . . . ,mr be integers with 3 ≤ m1 ≤ · · · ≤ ma and

3 ≤ ma+1 ≤ · · · ≤ mr, and define m = min{m1,ma+1}. For ma sufficiently large, there exists a constant

c > 0 such that

QW(m1, . . . ,ma;ma+1, . . . ,mr; s) ≥ c
(

ma(r − 1)

(m− 1) logma(r − 1)

)m−1

for any positive integer s.

Proof. Color each integer of [1, N ] by colors 1, 2, . . . , r independently, in which each integer is colored i

with probability pi, where
∑r

i=1 pi = 1. For each Si of mi-AP of [1, N ], let ASi denote the event that Si

is monochromatic of color i, where 1 ≤ i ≤ a. For each Ti of mj-term quasi-progression of diameter s of

[1, N ], let ATj denote the event that Tj is monochromatic of color j, where a+ 1 ≤ j ≤ r.
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Let Γ denote the dependency graph on the events {ASi} ∪ {BTj}, so that {ASi , ASj} is an edge of Γ

if and only if |Si ∩ Sj | ≥ 1 (i.e., the events ASi and ASj are dependent), {ASi , BSj} is an edge of Γ if

and only if |Si ∩ Tj | ≥ 1, and {BSi , BSj} is an edge of Γ if and only if |Ti ∩ Tj | ≥ 1. We will refer to the

vertices {ASi} as A-type vertices; we refer to the vertices {BTi} as B-type vertices

Let NAiAj denote the number of edges containing ASi and connected to another Aj-type vertex. Define

NAiBj , NBjAi and NBiBj analogously. Using Lemmas 3.16 and 3.15 as explained in the proof of Theorem

3.18, we obtain the following bounds:

NAiAj < miN NBiAj < miN

NAiBj < miN
(
(s+ 1)mj−1 − 1

)
NBiBj < miN

(
(s+ 1)mj−1 − 1

)
.

By Corollary 3.14, if there exist positive integers pi, yi, pj , yj (1 ≤ i ≤ a, a+ 1 ≤ j ≤ r) such that

log yi > yip
mi
i miN +

a∑
k=1, k 6=i

ykp
mk
k miN +

r∑
k=a+1

ykp
mk
k miN

(
(s+ 1)mk−1 − 1

)
(1)

and

log yj > yjp
mj

j mjN
(
(s+ 1)mj−1 − 1

)
+

r∑
k=a+1, k 6=j

ykp
mk
k mkN

(
(s+ 1)mk−1 − 1

)
+

a∑
k=1

ykp
mk
k mjN (2)

then QW(m1, . . . ,ma;ma+1, . . . ,mr; s) > N .

For any given N , let

p = c1(r − 1)N−
1

m−1

where c1 is a positive constant to be determined later, and define

p1 = · · · = pa−1 = pa+1 = · · · = pr =
p

r − 1
, pa = 1− p.

With N given, we consider ma as

ma =
c2

r − 1
N

1
m−1 logN,

for some constant c2 to be chosen later. Finally, let

y1 = · · · = ya−1 = ya+1 = · · · = yr = 1 + ε (ε = o(1)), and ya = N c3 ,

for some to-be-determined constant c3.

It is sufficient to show that Inequalites (1) and (2) hold in all instances by showing that

log ya > (a− 1)y1p
m
1 maN + (r − a)y1p

m
1 maN

(
(s+ 1)mr−1 − 1

)
+ ya(1− p)mamaN, (3)

and

log ya+1 > (a− 1)y1p
m
1 m

′N + (r − a)y1p
m
1 m

′N
(
(s+ 1)mr−1 − 1

)
+ ya(1− p)mamaN (4)

where m′ = max{ma−1,mr}.
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Now choose constants c1, c2, and c3 so that c3 − cm1 c2(s+ 1)mr−1 > 0 and c3 − c1c2 + 2 < 0, i.e.,

c3 + 2

c1
< c2 <

c3

cm1 (s+ 1)mr−1
.

This is possible provided there exist positive constants c1 and c3 such that c3+2
c1

< c3
cm1 (s+1)mr−1 . By

considering c3 = .7 and c1 = (s+ 1)−
2mr
m we see that such constants do exist.

With these choices of constants, and letting ma be sufficiently large, a routine (but tedious) calcu-

lation shows that Inequalities (3) and (4) both hold so that QW(m1, . . . ,ma;ma+1, . . . ,mr; s) > N . To

determine our lower bound for N , with c2 > 0 now chosen, we have

ma(r − 1) = c2N
1

m−1 logN

and we can conclude that there exists a positive constant c so that

N > c

(
ma(r − 1)

(m− 1) log(ma(r − 1))

)m−1

for ma sufficiently large, thereby finishing the proof.

4 Gallai-van der Waerden Numbers

Recall that by Definition 1.15 we are now dealing with exact colorings, i.e., r-colorings for which all colors

are used at least once.

The following observation is immediate.

Observation 4.1. For all positive integers r, k, `, we have

GW(r; k, `− 1) ≤ GW(r; k, `) and GW(r; k − 1, `) ≤ GW(r; k, `).

4.1 Exact Values

We start with a basic result.

Proposition 4.1. The following hold:

(1) GW(1; k, `) = `

(2) If k = 2, then GW(r; 2, `) = r.

(3) If r < k, then GW(r; k, `) = w(r; `).

(4) If k ≤ r, then GW(r; k, 2) = r.

Proof. The proofs of (1), (2), and (3) are easily seen. We only give the proof of (4). For k ≤ r, since we

consider only exact colorings, it follows that GW(r; k, 2) ≥ r. To see that GW(r; k, 2) ≤ r consider an

arbitrary exact r-coloring of [1, n], with n ≥ r. If n = r, then 1, 2, . . . , k is a rainbow k-AP. If n > r, then

some color appears twice and we have a monochromatic 2-AP.
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Lemma 4.1. Every 3-coloring χ of [1, 9] admits a rainbow or monochromatic 3-AP.

Proof. Using red, blue, and green as the colors, we consider the possible ways in which the integers 3 and

5 may be colored.

Case 1. χ(3) = χ(5).

Without loss of generality, suppose that χ(3) = χ(5) is red. Since (1, 3, 5) cannot be monochromatic,

χ(1) is blue or green. Likewise, since neither (3, 4, 5) nor (3, 5, 7) can be red, χ(4) and χ(7) must be blue

or green. If (1, 4, 7) is a blue (or green) 3-AP, then we get a contradiction. So there are two colors, blue

and green, appearing in (1, 4, 7). Without loss of generality, we may assume that χ(1) is blue.

Suppose that χ(1), χ(4), χ(7) are blue, blue, green, respectively. If χ(2) is red, then to avoid two

rainbow 3-APs (5, 6, 7) and (4, 5, 6), χ(6) is red. To avoid two rainbow 3-APs (2, 5, 8) and (6, 7, 8), χ(8) is

red. To avoid a red 3-AP (2, 5, 8) and a rainbow 3-AP (6, 7, 8), χ(8) is green. To avoid a red 3-AP (3, 6, 9)

and a green 3-AP (7, 8, 9), χ(9) is blue. Then (5, 7, 9) is a rainbow 3-AP, a contradiction. If χ(2) is blue,

then χ(6), χ(8), χ(9) are red, red, green, respectively. Then (1, 5, 9) is a rainbow 3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are blue, green, green, respectively. Clearly, χ(2) must be red. If χ(6) is

green, then χ(8), χ(9) are blue, green, respectively. Then (1, 5, 9) is a rainbow 3-AP, a contradiction. If

χ(6) is red, then χ(8), χ(9) are green, red, respectively. Then (5, 7, 9) is a rainbow 3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are blue, green, blue, respectively. Clearly, χ(2) and χ(6) must be red.

If χ(8) is blue, then (4, 6, 8) is a rainbow 3-AP, a contradiction. If χ(8) is red, then (2, 5, 8) is a red 3-AP,

a contradiction. If χ(8) is green, then (5, 7, 8) is a rainbow 3-AP, a contradiction.

Case 2. χ(3) 6= χ(5).

Without loss of generality, suppose that χ(3) is red and χ(5) is blue. Since (1, 3, 5) cannot be rainbow,

χ(1) is red or blue. Likewise, since neither (3, 4, 5) nor (3, 5, 7) can be rainbow, χ(4) and χ(7) must be

red or blue. If (1, 4, 7) is a red (or blue) 3-AP, then we get a contradiction. So there are two colors, red

and blue, appearing in (1, 4, 7).

Suppose that χ(1), χ(4), χ(7) are blue, blue, red, respectively. Clearly, χ(2) is not green. If χ(2) is red,

then χ(6), χ(8), χ(9) are red, blue, blue, respectively, and hence (1, 5, 9) is a blue 3-AP, a contradiction.

If χ(2) is blue, then χ(6), χ(8), χ(9) are red, green, green, respectively, and hence (5, 7, 9) is a rainbow

3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are blue, red, red, respectively. Clearly, χ(2) is blue. If χ(6) is red, then

χ(8), χ(9) are green, respectively, and hence (1, 5, 9) is a rainbow 3-AP, a contradiction. If χ(6) is blue,

then χ(8), χ(9) are red, blue, respectively, and hence (1, 5, 9) is a blue 3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are blue, red, blue respectively. Clearly, χ(2) is blue and χ(6) is red. If

χ(8) is red, then (4, 6, 8) is a red 3-AP, a contradiction. If χ(8) is blue, then (2, 5, 8) is a blue 3-AP, a

contradiction. If χ(8) is green, then (6, 7, 8) is a rainbow 3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are red, red, blue respectively. Clearly, χ(2) is not red. If χ(2) is red,

then χ(6), χ(8) are red, blue, respectively, and hence (2, 5, 8) is a blue 3-AP, a contradiction. If χ(2)
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is green, then χ(6), χ(8), χ(9) are red, blue, green, respectively, and hence (1, 5, 9) is a rainbow 3-AP, a

contradiction.

Suppose that χ(1), χ(4), χ(7) are red, blue, red, respectively. Clearly, χ(2), χ(6), χ(8) are blue, red,

blue, respectively, and hence (2, 5, 8) is a blue 3-AP, a contradiction.

Suppose that χ(1), χ(4), χ(7) are red, blue, blue, respectively. Clearly, χ(2) is blue. If χ(6) is red,

then χ(8), χ(9) are red, blue, respectively, and hence (5, 7, 9) is a blue 3-AP, a contradiction. If χ(6) is

green, then χ(8), χ(9) are green, and hence (1, 5, 9) is a rainbow 3-AP, a contradiction.

Theorem 4.2. GW(3; 3, 3) = 9.

Proof. To show GW(3; 3, 3) ≥ 9, it suffices to exhibit an exact 3-coloring of [1, 8] with neither a rainbow

3-AP nor monochromatic 3-AP. One such coloring χ is the following: χ(1) = χ(2) = χ(4) are red,

χ(3) = χ(5) = χ(6) = χ(8) are blue, and χ(7) is green. It is easy to check that this coloring admits

neither a rainbow 3-AP nor a monochromatic 3-AP.

To show GW(3; 3, 3) ≤ 9, from Lemma 4.1, we know that every 3-coloring of [1, 9] admits a rainbow

or monochromatic 3-AP. We must consider an arbitrary exact 3-coloring χ of [1, n], with n ≥ 10, and

show that it admits a rainbow or monochromatic 3-AP. If all three colors appear in [1, 9], we are done. If

there there are only two colors appearing in [1, 9], then there is a monochromatic 3-AP since it is known

that w(2; 3) = 9.

For large r, we can derive the following result.

Theorem 4.3. For r ≥ 12, we have GW(r; 3, 3) = r.

Proof. Since we consider only exact colorings, it follows that GW(r; 3, 3) ≥ r. To show GW(r, 3, 3) ≤ r,

we must prove that every exact r-coloring of [1, n], with n ≥ r, admits a rainbow or monochromatic 3-AP.

We assume, for a contradiction, that there exists an exact r-coloring χ of [1, n], with neither a rainbow

3-AP nor a monochromatic 3-AP.

We start by showing that within the interval [3, 7], there exist two adjacent integers receiving the

same color. To justify this, assume, to the contrary and assume that 3 and 4 have colors i1 and i2 6= i1,

respectively. To avoid a rainbow 3-AP, 5 is colored either i1 or i2. However, we assume that it cannot

be the same color as 4. Hence, χ(5) = i1. From here we can deduce that χ(6) = i2, and, consequently,

χ(7) = i1. Then (3, 5, 7) is a monochromatic 3-AP, a contradiction.

Let a, a + 1 ∈ [3, 7], be two integers receiving the same color, say i1. Note that a ≥ 3 so that the

integers a − 2 and a − 1 are positive integers. Before considering cases, we can deduce that, to avoid a

monochromatic 3-AP, χ(a+ 2) must receive a new color, say i2.

Case 1. χ(a+ 3) = i2. To avoid a rainbow and monochromatic 3-AP, we have χ(a+ 4) = i1. Similarly,

χ(a−1) = i2, which implies that χ(a+5) = i1 and χ(a−2) = i1. If χ(a+6) = i1, then a+4, a+5, a+6 is

a monochromatic 3-AP, a contradiction. If χ(a+6) = i2, then a−2, a+2, a+6 is a monochromatic 3-AP,

a contradiction. If χ(a+ 6) is neither i1 nor i2, then a+ 2, a+ 4, a+ 6 is a rainbow 3-AP, a contradiction.
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Case 1. χ(a+ 3) 6= i2. To avoid a rainbow 3-AP, we must have χ(a+ 3) = i1. To avoid a rainbow 3-AP,

we see that χ(a+ 4) is i1 or i2.

Subcase i. χ(a+4) = i1. By considering (a+2, a+4, a+6) and (a, a+3, a+6) we must have χ(a+6) = i2.

By considering (a+ 3, a+ 4, a+ 5) and (a+ 4, a+ 5, a+ 6) we must also have χ(a+ 5) = i2. To avoid a

rainbow 3-AP we must have χ(a− 2) be i1 or i2. However, we obtain a contradiction if χ(a− 2) = i2 by

considering (a− 2, a+ 2, a+ 6). Hence, χ(a− 2) = 1, which means (a− 2, a+ 1, a+ 4) is a monochromatic

3-AP, a contradiction.

Subcase ii. χ(a+4) = i2. To avoid a rainbow and monochromatic 3-AP, we must have χ(a+5) = i2. To

avoid (a−1, a+ 2, a+ 5) and (a−1, a, a+ 1) being monochromatic, we must have χ(a−1) = i3 6∈ {i1, i2}.
This implies that χ(a−2) is either i1 or i3; otherwise (a−2, a−1, a) is a rainbow 3-AP. But if χ(a−2) = i3

then (a−2, a, a+2) is a rainbow 3-AP. Hence, χ(a−2) = i1. By considering the 3-APs (a−2, a+2, a+6)

and (a + 4, a + 5, a + 6) we deduce χ(a + 6) = 1. But then (a, a + 3, a + 6) is a monochromatic 3-AP, a

contradiction.

Note that the largest integer used in the proof is a + 6. Since a ≤ 6 we can conclude that for

n ≥ a+ 6 ≥ 12, every exact r-coloring of [1, n] admits either a rainbow or monochromatic 3-AP.

4.2 Lower Bounds

In [2], Behrend obtained the following result.

Lemma 4.4. [2] If p is prime, then w(2; p+ 1) ≥ p2p.

We can derive the following result using Lemma 4.4.

Theorem 4.5. Let r, k be positive integers with r ≥ k ≥ 7, and let p be a prime integer. Let

x =

⌊
k2 − 7k − r + 4

2k − 12

⌋
.

If p ≥ r−2x
(k−5)x and r ≤ k2 − 9k + 16, then

GW(r; k, p+ 1) ≥ xp(p2p − 1) +

⌊
r − 2x

k − 5

⌋
·
⌊
p2p + 2

3

⌋
.

Proof. Let i ≡
{

i
x

}
(mod x). For each color pair

(
2
{

i
x

}
, 2
{

i
x

}
+ 1
)

if 0 ≤ i ≤ xp−2
2 , and x is even,(

2
{

i
x

}
, 2
{

i
x

}
+ 1
)

if 0 ≤ i ≤ xp−p−2
2 , and x is odd,

by Lemma 4.4, there exists an interval

Xi = [i(p2p − 1) + 1, (i+ 1)(p2p − 1)]

containing neither a rainbow k-AP nor a monochromatic (p+ 1)-AP under the above 2x-coloring.
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Let m =
⌊
r−2x
k−5

⌋
. For each j ∈ [1,m], let

Yj =

[
(j − 1)

⌊
p2p + 2

3

⌋
+ 1, j

⌊
p2p + 2

3

⌋]
.

be an interval colored by (k−5) previously unused colors such that there is no monochromatic (p+1)-AP

in Yj . Trivially, Yj contains no rainbow k-APs.

Since p ≥ r−2x
(k−5)x , we can insert Y1, Y2, . . . , Ym into X0, X1, . . . , Xxp−1 as follows:

Z = Y1, X0, Y2, X1, . . . , Ym, Xm−1, Xm, . . . , Xxp−1.

Note that we have used at most r colors. Hence, we let

ϕ : Z →
[
1, xp(p2p − 1) +m

⌊
p2p + 2

3

⌋]
be the r-coloring defined by Z.

The proof is finished by showing that there is no rainbow k-AP under ϕ. Since the total number of

colors used in the Xi’s is at most 2x, it follows that |Ak ∩ (
⋃xp−1

i=0 Xi)| ≤ 2x. Next, we have, |Ak ∩ Yj | ≤ 1

for each j (1 ≤ j ≤ m). Since x =
⌊
k2−7k−r+4

2k−12

⌋
, it follows that m + 2x ≤ k − 1, and hence there is no

rainbow k-APs in Z.

Using the basic probability method, the following result for GW(r; `, k) can be derived.

Theorem 4.6. Let r, k, ` be positive integers with k ≤ r. Let m = min(k, `). Then

GW(r; k, `) ≥
√

2(m− 2)√(
r−(k−1)/2

r

)k
+ r1−`

Proof. Randomly r-color [1, n], each i being colored cj with probability 1
r , where 1 ≤ j ≤ r. For each S of

k-AP , let AS be the event “S is rainbow”. For each T of `-AP , let BT be the event “T is monochromatic”.

It is clear that

Pr [AS ] =
r(r − 1) · · · (r − k + 1)

rk
and Pr [BT ] = r1−`.

Then

Pr

 ∨
|S|=k

AS

∨ ∨
|T |=`

BT

 ≤ Pr

 ∨
|S|=k

AS

+ Pr

 ∨
|T |=`

BT


≤

∑
|S|=k

Pr[AS ] +
∑
|T |=`

Pr[BT ]

≤ n2

2(k − 2)

r(r − 1)(r − 2) · · · (r − k + 1)

rk
+

n2

2(`− 2)
r1−`

<
n2

2(m− 2)

[(
r − (k − 1)/2

r

)k

+ r1−`

]
.
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Let

q =
n2

2(m− 2)

[(
r − (k − 1)/2

r

)k

+ r1−`

]
.

Setting q < 1 we have

n <

√
2(m− 2)√(

r−(k−1)/2
r

)k
+ r1−`

,

and hence

Pr

 ∧
|S|=k

AS

∧ ∧
|T |=`

BT

 > 0,

meaning there exists an r-coloring of [1, n] that avoids the monochromatic and rainbow structures con-

sidered, giving the stated bound.

Corollary 4.7. Let k > 2r log r. For r sufficiently large,

GW(r; k, k) ≥
√
k − 2 · e

k(k−1)
4r >

√
k − 2 · r

k−1
2 .

Proof. First note that (
r − (k − 1)/2

r

)k

=

((
1− k − 1

2r

)r)k/r

≈ e
−k(k−1)

2r .

For the given bound on k we have

e
k(k−1)

2r < rk−1.

Using the bound in Theorem 4.6 with k = ` we have√
2(k − 2)√(

r−(k−1)/2
r

)k
+ r1−k

≈
√

2(k − 2)√
e−k(k−1)/2r + r1−k

>

√
2(k − 2)√

2e−k(k−1)/2r
=
√
k − 2 · e

k(k−1)
4r .

Since the Lovász Local Lemma is successful in improving bound for many Ramsey-type numbers, we

investigate that next. The result is similar to the bound obtained in [26] as the argument is similar, but

the number of colors used and the probability of rainbow arithmetic progressions needs to be addressed.

Theorem 4.8. Let k, `, r be positive integers with ` ≥ 3 and r > k ≥ 9. For any absolute constant c < 1,

we have

GW(r; k, `) > c

(
(r − k)(`− 1)

(r − 1) ln(`− 1)

)(k−1)/4

.
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Proof. Let the integers in [1, n] be independently r-colored with the probability that a number in [1, n] is

colored by ci (1 ≤ i ≤ r − 1) equal to p
r−1 , and the probability of it being colored by cr equal to 1 − p.

To each S of k-AP associate the event AS that all k-APs in S have colored rainbow. To each T of `-AP

associate the event BT that all the `-APs in T have colored monochromatic.

For each S of k-AP , let AS be the event “S is rainbow”. For each T of `-AP , let BT be the event “T

is monochromatic”. It is clear that

Pr[AS ] = (r − 1)(r − 2) · · · (r − k)

(
p

r − 1

)k

+ k(r − 1)(r − 2) · · · (r − k + 1)(1− p)
(

p

r − 1

)k−1

=
(r − 1)!

(r − k − 1)!

(
p

r − 1

)k−1 [( p

r − 1

)
+
k(1− p)
r − k

]
so that with

N =
(r − 1)!

(r − k − 1)!

(
1

(r − 1)k−1

)[(
p

r − 1

)
+
k(1− p)
r − k

]
we have

Pr[AS ] ≤ Npk−1.

Provided that p ≤ r−1
r , we have

Pr [BT ] = (r − 1)

(
p

r − 1

)`

+ (1− p)` = p

(
p

r − 1

)`−1

+ (1− p)`

≤ p (1− p)`−1 + (1− p)` = (1− p)`−1.

In order to use Corollary 3.14, we need some preliminary results (which are standard for applications

of the Lovász Local Lemma to arithmetic progressions). Consider the dependency graph on all possible

AS and BT . Let NAA denote the number of vertices of the form AS for some S joined to some other

vertex of this form, and let NAB, NBA and NBB be defined analogously. It is routine (see, e.g., [26]) to

derive the following bounds:

NAB ≤
`kn

`− 1
; NAA ≤

k2n

k − 1
; NBB ≤

`2n

`− 1
; NBA ≤

`kn

k − 1
.

By Corollary 3.14, if there exist positive p, y, z such that

log y > yPr[AS ]NAA + z Pr[BT ]NAB, log z > yPr[AS ]NBA + z Pr[BT ]NBB, (5)

then GW(r; k, `) > n. Set

p = c1n
−4/(k−1)N−1/(k−1); z = exp(c3(log n)), y = 1 + ε,

and note that for n sufficiently large we have p ≤ r−1
r .

Let c2 >
4(r−1)

(k−1)(r−k) and choose c1 > 0 and c3 > 0 so that c3 − c1c2 + 3 < 0. For n sufficiently large, a

bit of algebra shows that the following inequalities hold:

log y > y ·Npk−1 · k
2n

k − 1
+ z · (1− p)`−1 · `kn

`− 1

22



and

log z > y ·Npk−1 · `kn
k − 1

+ z · (1− p)`−1 · `
2n

`− 1
.

By choice of c2 we have

`− 1 ≤ c2(log n)n4/(k−1)N1/(k−1)

≤ c2
(k − 1)

4

(
log n4/(k−1)

)
n4/(k−1)N1/(k−1)

≤ c2
(k − 1)

4
log
(

(`− 1)N (−1)/(k−1)
)
n4/(k−1)N1/(k−1).

It follows that

n4/(k−1) >
4(`− 1) ·N (−1)/(k−1)

c2(k − 1) ln((`− 1)N (−1)/(k−1))
.

Note that by choice of c2, we have

n4/(k−1) > c

(
r − k
r − 1

)
(`− 1) ·N (−1)/(k−1)

ln((`− 1)N (−1)/(k−1))
.

for any c < 1.

Next, we see that for any m > 1
`−1 we have m(`−1)

log((`−1)m) ≥
`−1

log(`−1) . To see this, note that as a function

of m, the expression on the left is minimized (over positive values of m) at m = e
`−1 and the inequality

follows since e ≥ 1 + 1
log(`−1) since ` ≥ 3. We will show that we may take m = N (−1)/(k−1). Noting that

(r − 1)!

(r − k − 1)!

(
1

(r − 1)k−1

)
≤ r − 1

so that 1
N ≥

r−k
k(r−1)−rp(k−1) >

r−k
k(r−1) it remains to show that 1

N > 1
(`−1)k−1 , which is satisfied when

r − k
k(r − 1)

>
1

(`− 1)k−1
.

Since r > k, it suffices to have r < (`−1)k−1

k , an expression that is significantly larger than the bound

given in the theorem’s statement. Hence, since r < GW(r; k, `) is trivially true, we may indeed take

m = N (−1)/(k−1) and, consequently, apply Corollary 3.14, with

n = c

(
(r − k)(`− 1)

(r − 1) ln(`− 1)

)(k−1)/4

to prove that there exists an r-coloring of [1, n] that does not admit either a monochromatic `-AP or a

rainbow k-AP, thereby finishing the proof.

To end this section, we consider the situation where we are not restricted to using all colors (i.e., we

are not restricted to exact colorings). It is easy to see that GW′(r; k, `) > (`− 1)2(k − 1) by considering

the (k − 1)-coloring

1`−12`−13`−1...(k − 1)`−1

repeated `− 1 times. However, we can do significantly better than this.
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Theorem 4.9. Let r, k, ` be integers. There exists a positive constant c such that

GW′(r; k, `) ≥ c(k − 1)`−1.

Proof. This follows by noting that with n = w(k − 1; `) − 1 there exists a (k − 1)-coloring of [1, n] with

no monochromatic `-term arithmetic progression. Since we do not use enough colors to have a rainbow

arithmetic progression of k terms, we have GW′(r; k, `) ≥ w(k − 1; `). The result follows by applying

Theorem 1.5.
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