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Abstract. We present a compositional semantics for first-order logic with imperfect

information that is equivalent to Sevenster and Sandu’s equilibrium semantics (under

which the truth value of a sentence in a finite model is equal to the minimax value of its

semantic game). Our semantics is a generalization of an earlier semantics developed by

the first author that was based on behavioral strategies, rather than mixed strategies.
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Introduction

Game-theoretic semantics is an approach to first-order logic that defines
truth and satisfaction in terms of (semantic) games. Although the funda-
mental intuition that quantifiers can be interpreted as moves in a game is
present already in Peirce’s second Cambridge Conferences lecture [18], as
well as Henkin’s seminal paper on branching quantifiers [7], game-theoretic
semantics was first popularized by Hintikka [8, 9] (see also [11, 13]).

In brief, the semantic game associated with a first-order sentence is a
contest between two opponents. One tries to verify the sentence by choosing
the values of existentially quantified variables, while the other tries to falsify
it by picking the values of universally quantified variables. Disjunctions
prompt the existential player to choose a disjunct; conjunctions prompt the
universal player to pick a conjunct. Negation tells the players to switch roles.
A first-order sentence is true (false) in a model if and only if the existential
(universal) player has a winning strategy.

In order to define the semantic game for an open1 first-order formula,
one must specify the values of its free variables. Usually, this is done using
an assignment. If the open formula in question is a subformula of some

Presented by Name of Editor; Received December 1, 2005
1A first-order formula is said to be open if it has free variables, that is, if it is not a

sentence.
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first-order sentence, then we can think of the assignment as encoding the
previous moves of the players in the semantic game for the sentence.

In the semantic game for any first-order formula, the players take turns
making their moves, and at each decision point the active player is aware
of every move leading up to the current position. Such games can thus be
modeled as extensive games with perfect information.

First-order logic with imperfect information is an extension of first-order
logic obtained by considering semantic games with imperfect information.
In a game with imperfect information, the active player may not be aware
of every move leading up to the current position. To specify such games, we
must extend the syntax of first-order logic to be able to indicate what infor-
mation is available to the active player. We briefly describe three approaches
found in the literature.

Independence-friendly (IF) logic, introduced by Hintikka and Sandu [12],
adds a slash set to each quantifier that indicates which variables the active
player is not allowed to access when choosing the value of the quantified
variable. For example, in the independence-friendly sentence

∀x
(
∃y/{x}

)
Rxy,

the existential player must choose the value of y without knowing the value
of x. One drawback of IF logic is that by specifying which variables a
player is not allowed to see, the set of variables the player is allowed to see
depends not only on the quantifier itself, but also on which variables have
been assigned values.

An alternative approach, called dependence-friendly (DF) logic, specifies
which variables the active player is allowed to access. Traditionally, the
set of variables whose values the active player can see is indicated using a
backslash instead of a forward slash. In an attempt to lighten our notation,
we will instead place such sets in a superscript above the relevant quantifier.
For example, the dependence-friendly sentence

∀x∅ ∃y∅Rxy

has the same semantic game as the IF sentence above because the values of
x and y are chosen independently.

Väänänen goes a step further by introducing new atomic formulas of the
form

=(t1, . . . , tn)

whose intuitive meaning is that the value of the term tn depends only on
the values of the terms t1, . . . , tn−1. The atomic formula =(t) asserts that
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the value of t is constant [21, p. 17]. Thus, when playing the semantic game
for the dependence logic formula

∀x∃y
(
=(y) ∧Rxy

)
,

the existential player knows the value of x when choosing the value of y,
but if the game is repeated she must choose the same value for y as before,
regardless of the new value of x.

All three variants have the same expressive power as existential second-
order logic, a result first proved independently by Enderton [3] and Walkoe
[23] for first-order logic with branching quantifiers. In the present paper
it will be convenient to work with dependence-friendly logic, but all of our
results can be adapted to the other two frameworks.

1. Syntax

Definition 1.1. For a fixed vocabulary L, the set of L-terms and the set of
atomic formulas with vocabulary L are defined as for first-order logic. The
set DFL of dependence-friendly formulas with vocabulary L is generated by
the grammar

χ | ∼φ | (φ ∨ φ) | ∃xV φ

where χ ranges over all atomic formulas with vocabulary L, x ranges over
the variables in a countably infinite set {x1, x2, . . . }, and V ranges over finite
subsets of {x1, x2, . . . }. We adopt the standard abbreviations of (ϕ ∧ ψ) for
∼(∼φ ∨ ∼ψ) and ∀xV φ for ∼∃xV∼φ.

The set V in the formula ∃xV φ is called a dependence set because it
specifies upon which variables the value of x depends. In principle, we could
attach dependence sets to disjunctions (and conjunctions), but we prefer
not to in order to simplify the presentation. Adding dependence sets to
disjunctions would not increase the expressive power of the logic because we
can simply take φ ∨W ψ to be an abbreviation for

∃zW
[
(z = 0 ∧ ϕ) ∨ (z = 1 ∧ ψ)

]
,

where 0 and 1 are constant symbols, and z is a fresh variable that does not
occur in φ, ψ, or W .

Free variables are defined as usual, except that in a formula of the form
∃xV φ the variables in V are considered to be free.

Definition 1.2. The set Free(φ) of free variables of a DF formula φ is
defined recursively. If φ is atomic every variable is free. In addition,
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• Free(∼φ) = Free(φ),

• Free(φ ∨ ψ) = Free(φ) ∪ Free(ψ),

• Free(∃xV φ) =
(
Free(φ) \ {x}

)
∪ V .

Notice that the variable x can be free in a formula of the form ∃xV φ or
∀xV φ.

2. Game-theoretic semantics

For the sake of comparison, we first define the semantic game for first-order
formulas. One can imagine that after every move of the semantic game, a
new subgame begins. Thus we need a way to encode the state of the game in
such a way that the subgame starts in the correct position. The state of the
semantic game for a first-order sentence consists of the current subformula,
the values of the variables, and which player is the verifier.

Definition 2.1. An assignment is a function that assigns values to variables.
If M is a structure with universe M , and V is a set of variables, then a
function s : V → M is called an M-valued assignment. If m ∈ M , the
assignment s[x/m] is defined by

s[x/m](y) =

{
m if x = y,

s(y) if x 6= y.

If V ′ ⊆ V , then
s|V ′ =

{〈
x, s(x)

〉
: x ∈ V ′

}
is called the restriction of s to V ′.

Definition 2.2. Let φ be a first-order formula, M a suitable structure, and
s an M-valued assignment whose domain contains Free(φ). The semantic
game G(M, s, φ) is defined as follows.

• A position of the game is a triple 〈ψ, s′, α〉, where ψ is a particular in-
stance2 of a subformula of φ, s′ is an assignment whose domain contains
Free(ψ), and α ∈ {∃, ∀}. We invite Eloise to play the role of the existen-
tial player and Abelard to play the role of the universal player. When ψ
is an atomic formula, 〈ψ, s′, α〉 is called a terminal position.

• The set of all positions of the game is denoted by P . Let Pα denote the
set of non-terminal positions of the form 〈ψ, s′, α〉.

2For example, if φ is ψ ∨ ψ, we distinguish between the left and right disjuncts.
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• A history or play is a finite sequence of positions p0, . . . , pn such that for
all 0 ≤ i < n:

◦ p0 = 〈φ, s,∃〉;
◦ if pi = 〈∼ψ, s′, α〉 then pi+1 = 〈ψ, s′, α〉, where ∃ = ∀ and ∀ = ∃;
◦ if pi = 〈ψ ∨ χ, s′, α〉 then pi+1 = 〈ψ, s′, α〉 or pi+1 = 〈χ, s′, α〉;
◦ if pi =

〈
∃xV ψ, s′, α

〉
then pi+1 =

〈
ψ, s′[x/m], α

〉
for some m ∈M ;

◦ if pi is a terminal position, then i = n.

• A terminal history or complete play is a history p0, . . . , pn such that
pn = 〈χ, s′, α〉 is a terminal position. The winner of a terminal history is

◦ player α if M, s′ |= χ,

◦ player α if M, s′ 6|= χ.

When the assignment s is empty we simply write G(M, φ).

A strategy for player α in G(M, s, φ) is a function σ : Pα → P such
that if p0, . . . , pn is a history, and pn ∈ Pα, then p0, . . . , pn, σ(pn) is also a
history. Player α is said to follow a strategy σ in a history p0, . . . , pn if
for all 0 ≤ i < n such that pi ∈ Pα we have σ(pi) = pi+1. A strategy is
winning if its owner wins every complete play in which he or she follows
it. The Gale-Stewart theorem [4] implies that for any first-order semantic
game, either Eloise or Abelard must have a winning strategy.

Definition 2.3. An assignment s satisfies a first-order formula φ in a model
M, written M |=s φ, if Eloise has a winning strategy for the semantic game
G(M, s, φ). A first-order sentence φ is true in M, written M |= φ, if Eloise
has a winning strategy for G(M, φ).

Semantic games for DF formulas are similar to those for first-order for-
mulas except that the players do not always have access to the entire assign-
ment when making their moves. Thus, in order to encode the state of the
game during play, it is no longer sufficient to simply record the values of the
variables. We must also record what the players know about the values of
the variables.

Definition 2.4. A team is a set of assignments with the same domain. A
team of M-valued assignments is called an M-valued team.

Definition 2.5. Let φ be a DF formula, M a suitable structure, and X
a team whose domain contains Free(φ). The semantic game G(M, X, φ) is
defined as above, except:
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• The initial position of a history p0, . . . , pn may be any member of{
〈φ, s,∃〉 : s ∈ X

}
.

• Two positions
〈
∃xV ψ, s, α

〉
and

〈
∃xV ψ, s′, α

〉
are indistinguishable if

s|V = s′|V (in which case we write s =V s′).

When the team X includes only the empty assignment, we simply write
G(M, φ).

A team encodes the information that the players have about the current
assignment at the beginning of the game. More precisely, a team X repre-
sents the knowledge that the current assignment belongs to X. The semantic
game for a DF formula is unusual in that it does not have a unique starting
position. It may help the reader’s intuition to imagine that, at the beginning
of the game, the initial assignment is chosen from X by a disinterested third
party (Nature), after which Eloise makes her first move.

A strategy σ for player α in the game G(M, X, φ) must be uniform
in the sense that if two positions p = 〈∃xV ψ, s, α〉 and p′ = 〈∃xV ψ, s′, α〉
are indistinguishable, then σ(p) = σ(p′). In general, the lack of perfect
information about the current assignment prevents the players from following
strategies that would otherwise be available, but it does not prevent them
from performing any particular action. For example, in the semantic game
for

∀x∅ ∃y∅Rxy

played in the structure 2 = {0, 1}, each player has two possible strategies:
x := 0 or x := 1 for Abelard, and y := 0 or y := 1 for Eloise. In contrast, in
the semantic game for the first-order sentence

∀x∃yRxy

Eloise may follow the additional strategies y := x and y := 1− x.
The fact that Eloise and Abelard may be prevented from following certain

strategies means that it is possible for neither of them to have a winning
strategy. For example, none of the uniform strategies for ∀x∅ ∃y∅ x = y in
a structure with at least two elements is winning. Hence the sentence is
neither true nor false.

Definition 2.6. A team X satisfies a DF formula φ in a model M, written
M |=+

X φ, if Eloise has a winning strategy for G(M, X, φ), in which case
we also say that X is a winning team for φ in M. A team X dissatisfies
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φ, written M |=−X φ, if Abelard has a winning strategy for G(M, X, φ), in
which case we say that X is a losing team for φ in M.

A DF sentence φ is true in M, written M |=+ φ, if Eloise has a winning
strategy for G(M, φ), and it is false in M, written M |=− φ, if Abelard has
a winning strategy.

3. Trump semantics

Tarski’s semantics for first-order logic is a recursive procedure for analyz-
ing the semantic game of a first-order sentence in terms of its subgames.
Originally, the game-theoretic semantics for IF logic was only defined for
sentences [10, 12]. Later Hodges extended Hintikka and Sandu’s semantics
to open IF formulas, and showed how to analyze the semantic game of an IF
sentence in terms of its subgames. Hodges called a winning team a trump,
and a losing team a cotrump; hence the name trump semantics [14, 15].

In order to pass from game to subgame, we need a way to update the
information the players have about the current assignment. When Eloise
chooses the value of an existentially quantified variable, she can calculate
the effect of her choice on all the assignments she considers possible. Given
a team X and a set of variables V , let

X|V =
{
s|V : s ∈ X

}
.

If F : X|V → M and s ∈ X, we abuse notation by writing F (s) = F
(
s|V
)
.

Define the supplement team

X[x/F ] =
{
s
[
x
/
F (s)

]
: s ∈ X

}
.

Even when he is completely ignorant of the current assignment, Abelard
is free to choose any element of the universe as the value of a universally
quantified variable. Hence Eloise cannot assume anything about the element
he picked. Define the duplicate team

X[x/M ] =
{
s[x/m] : s ∈ X, m ∈M

}
.

Theorem 3.1 (Hodges [14, Theorem 7.5]). Let M be a structure, and let X
be a team. First, the clauses for satisfaction:

• If φ is atomic, then M |=+
X φ if and only if for all s ∈ X, M |=s φ.

• M |=+
X ∼φ if and only if M |=−X φ.
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• M |=+
X φ ∨ ψ if and only if there exists a cover X = Y ∪ Z such that

M |=+
Y φ and M |=+

Z ψ.

• M |=+
X ∃xV φ if and only if there is a function F : X|V →M such that

M |=+
X[x/F ] φ.

Now the clauses for dissatisfaction:

• If φ is atomic, then M |=−X φ if and only if for all s ∈ X, M 6|=s φ.

• M |=−X ∼φ if and only if M |=+
X φ.

• M |=−X φ ∨ ψ if and only if M |=−X φ and M |=−X ψ.

• M |=−X ∃xV φ if and only if M |=−X[x/M ] φ.

4. Equilibrium semantics

A DF sentence can be true, false, or neither. Thus, considering semantic
games with imperfect information introduces a third truth value: undeter-
mined.

So far, we have treated all undetermined DF sentences the same. But
if neither player has a winning strategy, which strategies should the players
follow? Intuitively, Eloise should follow a strategy that allows her to win
as often as possible, regardless of the fact that she cannot win every play.
If Eloise always follows the same non-winning strategy σ, there must be a
strategy τ for Abelard such that he wins the play determined by σ and τ .
But since τ is non-winning there must be a strategy σ′ for Eloise such that
she wins the play determined by σ′ and τ . For example, in the game

G
(
2, ∃x∅ ∀y∅ x = y

)
,

the strategy x := 0 wins against the strategy y := 0, but loses against y := 1.
However, x := 1 beats y := 1, and so on (see Figure 1).

In order to stop going around in circles, we must allow the players to
randomize their strategies.

Definition 4.1. Let φ be a DF sentence, and let M be a suitable structure.
Let S∃ denote the set of Eloise’s (pure) strategies for the semantic game
G(M, φ), and let S∀ denote the set of Abelard’s (pure) strategies. We say
that G(M, φ) is finite if S∃ and S∀ are both finite.
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x := 0
y := 0

x := 1
y := 0∃

x := 1
y := 1

∀

x := 0
y := 1

∃

∀

Figure 1. The semantic game for ∃x∅ ∀y∅ x = y

Since a pair of pure strategies 〈σ, τ〉 ∈ S∃ × S∀ determines a complete
play of the game, we can define the utility for player α by

uα(σ, τ) =

{
1 if α wins,
0 if α wins.

A mixed strategy for player α is a probability distribution over Sα, the set of
which is denoted ∆(Sα). Given a pair of mixed strategies 〈µ, ν〉 ∈ ∆(S∃)×
∆(S∀), the expected utility for player α is

Uα(µ, ν) =
∫ ∫

uα dµ dν.

When S∃ and S∀ are both finite, we have

Uα(µ, ν) =
∑
σ∈S∃

∑
τ∈S∀

µ(σ) ν(τ)uα(σ, τ).

Since uα = 1 − uα and Uα = 1 − Uα, we will focus on Eloise’s utility
function u = u∃ and expected utility function U = U∃.

Example 4.2. Let us revisit the game G
(
2, ∃x∅ ∀y∅ x = y

)
. If Eloise follows

the strategy x := 0 with probability p, and Abelard follows the strategy
y := 0 with probability q, then Eloise’s expected utility is

U(µp, νq) = pq + (1− p)(1− q).

Hence, if p = 1/3 and q = 3/4, Eloise’s expected utility is 5/12.
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Notice that if we fix Abelard’s mixed strategy of playing y := 0 with
probability 3/4, Eloise’s expected utility is

U(µp, ν3/4) =
3
4
p+

1
4

(1− p) =
1
2
p+

1
4
.

Thus Eloise maximizes her expected utility by always playing x := 0.
By allowing the players to use mixed strategies we can assign intermedi-

ate truth values to undetermined DF sentences.

Definition 4.3. A pair 〈µ∗, ν∗〉 ∈ ∆(S∃) × ∆(S∀) of mixed strategies is a
Nash equilibrium if

• for all µ ∈ ∆(S∃) we have U(µ, ν∗) ≤ U(µ∗, ν∗),
• for all ν ∈ ∆(S∀) we have U(µ∗, ν∗) ≤ U(µ∗, ν).

Proposition 4.4. If 〈µ, ν〉 and 〈µ′, ν ′〉 are both Nash equilibria, then

U(µ, ν) = U(µ′, ν ′).

Proof. U(µ, ν) ≤ U(µ, ν ′) ≤ U(µ′, ν ′) ≤ U(µ′, ν) ≤ U(µ, ν).

Proposition 4.4 shows that any two Nash equilibria for a semantic game
will yield the same expected utilities for the players. Nash equilibria for
semantic games do not alway exist, however. Consider the semantic game
for the sentence

∀x∅ ∃y∅x ≤ y
played on the natural numbers. No pair of mixed strategies 〈µ, ν〉 ∈ ∆(S∃)×
∆(S∀) is a Nash equilibrium because each player can improve her or his
expected utility by choosing yet greater numbers with higher probability.

Fortunately for us, von Neumann’s minimax theorem states that Nash
equilibria3 exist for every two-player, zero-sum game in which each player
has a finite number of pure strategies [22]. Thus, when M is finite, G(M, φ)
has a Nash equilibrium. Furthermore, since any two Nash equilibria yield
the same expected utilities, we can define the value of the game to be

Val(M, φ) = U(µ∗, ν∗),

where 〈µ∗, ν∗〉 is any Nash equilibrium for G(M, φ). In other words, the
truth value of a DF sentence φ in a finite model M is the probability that
Eloise wins a play of the semantic game G(M, φ), assuming the players follow
(mixed) strategies that are in equilibrium.

3We adopt the modern terminology even though the minimax theorem precedes Nash’s
work by 31 years.
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Definition 4.5. Let φ be a DF sentence and M a suitable finite structure.
We write M |=ε φ if and only if Val(M, φ) = ε.

Example 4.6. Let n = {0, . . . , n− 1} be a structure with n elements. Then

n |=1/n ∃x∅ ∀y∅ x = y.

Consider the uniform mixed strategies

µ∗ =
∑
i∈n

1
n

(x := i) and ν∗ =
∑
j∈n

1
n

(y := j)

for Eloise and Abelard, respectively, and observe that U(µ∗, ν∗) = 1/n. To
show 〈µ∗, ν∗〉 is a Nash equilibrium, note that if Eloise follows any other
mixed strategy µ,

U(µ, ν∗) =
∑
i∈n

∑
j∈n

µ(x := i) ν∗(y := j)u(x := i, y := j)

=
1
n

∑
i∈n

(
µ(x := i)

∑
j∈n

u(x := i, y := j)

)
=

1
n

(∑
i∈n

µ(x := i)

)
= 1/n.

Furthermore, if Abelard switches to any other mixed strategy ν, then

U(µ∗, ν) = 1/n

by a similar calculation. Thus neither player has an incentive to deviate
from 〈µ∗, ν∗〉.

The previous example is due to Miklos Ajtai, who suggested using the
minimax theorem to assign intermediate truth values to sentences with
branching quantifiers [1, p. 16]. Later, Sevenster [19] followed by Sevenster
and Sandu [20] implemented Ajtai’s suggestion for IF sentences and coined
the name equilibrium semantics. Definition 4.5 is simply an adaptation of
equilibrium semantics to DF logic.

Independently of Sevenster and Sandu, the first author developed a prob-
abilistic semantics for DF logic based on behavioral strategies,4 and showed
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1, 3

2, 0

2, 1
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3, 0

3, 1

3, 2

3, 3

Figure 2. A Nash equilibrium for G
`
4, ∃x∅ ∀y∅x = y

´

how to analyze his semantics compositionally [5, 6]. The goal of the present
paper is to do the same for equilibrium semantics.

We can visualize the Nash equilibrium in Example 4.6 as a rectangular
partition of the unit square (see Figure 2). The regions where Eloise wins
are shaded. Moreover, we can represent any pair of mixed strategies using
a similar diagram.

Definition 4.7. Let φ be a DF formula, and let M be a suitable finite
structure. Then each player has only finitely many pure strategies for the
semantic game G(M, φ). A representation of a mixed strategy µ ∈ ∆(Sα) is
a partition of the unit interval [0, 1] into subintervals A1, . . . , Am such that,
for each pure strategy σi in the support of µ, the length of Ai equals µ(σi).

A representation of a pair of mixed strategies 〈µ, ν〉 ∈ ∆(S∃)×∆(S∀) is

4A behavioral strategy tells a player to choose which action to take based on a different

probability distribution at each decision point. In contrast, a mixed strategy tells a player
to choose which pure strategy to follow according to a probability distribution over the set
of all pure strategies. Every behavioral strategy corresponds to a mixed strategy, but not
vice versa. Kuhn’s theorem states that in a game with perfect recall every mixed strategy
corresponds to a behavioral strategy [16].

Not all semantic games have perfect recall, so Kuhn’s Theorem does not apply. For
example, in the game G

`
2, ∃x∅ ∃y∅ x = y

´
, the mixed strategy

1

2
(x := 0, y := 0) +

1

2
(x := 1, y := 1)

does not correspond to any behavioral strategy.
A behavioral equilibrium is a Nash equilibrium 〈µ∗, ν∗〉 where both µ∗ and ν∗ are behav-

ioral strategies. Although behavioral strategies are easier to analyze than mixed strategies,
it must be stressed that the minimax theorem does not guarantee the existence of behav-
ioral equilibria.
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σ1, τ1 σ2, τ1 σ3, τ1

σ1, τ2 σ2, τ2 σ3, τ2

Figure 3. A representation of a pair of mixed strategies

a partition
{Ai ×Bj : Ai ∈ A, Bj ∈ B }

of the unit square [0, 1]2 such that A = {A1, . . . , Am} is a representation of
µ and B = {B1, . . . , Bn} is a representation of ν (see Figure 3). The area
of the shaded region equals Eloise’s expected utility U(µ, ν). Thus, when
〈µ, ν〉 is a Nash equilibrium, the shaded area corresponds to the value of the
game.

We will use such representations in the next section to define a compo-
sitional semantics for DF logic that is equivalent to equilibrium semantics.

5. Lottery games

The first challenge Hodges faced when trying to develop a compositional
semantics for IF formulas was that Hintikka and Sandu only defined their
game-theoretic semantics for IF sentences. We now find ourselves in a similar
position. To calculate the truth value of a DF sentence (in a finite model)
in terms of the truth values of its subformulas, we must extend equilibrium
semantics to open formulas.5 In other words, we need a way to encode the
state of the semantic game after each move.

5Mann, Sandu, and Sevenster [17] define equilibrium semantics for open IF formulas,
but their semantics is not fully compositional.
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At this point, we confront a seemingly insurmountable obstacle. When
a player follows a mixed strategy, he or she picks which pure strategy to
follow at the beginning of the game, and then executes his or her chosen
strategy without further reflexion. In a sense, each player only moves once,
and both players move simultaneously. We call the version of the semantic
game which ends immediately after both players have chosen their strategies
a strategic DF game. It is difficult to decompose strategic DF games into
their subgames because such games do not have subgames!

In order to analyze strategic DF games, we simulate them using a new
kind of game defined below.

Definition 5.1. A grid is a pair 〈A,B〉 of finite partitions of the unit interval
such that every A ∈ A and B ∈ B is measurable. A partial function H on
the unit square respects the grid 〈A,B〉 if it is constant on every rectangle
defined by the grid:

a, a′ ∈ A ∈ A and b, b′ ∈ B ∈ B imply H(a, b) = H(a′, b′).

We allow ourselves to write H(a, b) = H(a′, b′) when both are undefined.

Definition 5.2. A strategy guide for a structure M that assigns values to
the variables in V is a partial function H : [0, 1]2 →MV on the unit square
that respects a grid. For each fixed a ∈ [0, 1] we let

H(a, ∗) =
{
H(a, b) : b ∈ [0, 1] and H(a, b) is defined

}
,

and for each fixed b ∈ [0, 1],

H(∗, b) =
{
H(a, b) : a ∈ [0, 1] and H(a, b) is defined

}
.

Note that H(a, b) is an assignment, while H(a, ∗) and H(∗, b) are teams. We
call H(a, ∗) a vertical cross-section and H(∗, b) a horizontal cross-section.

Strategy guides will play the role in our compositional semantics that
teams play for trump semantics.

Definition 5.3. Let φ be a DF formula, M a suitable finite structure, and
H a strategy guide for M that assigns values to the free variables of φ (and
possibly other variables). The lottery game G(M, H, φ) is defined as follows.

• The set of positions is defined as in Definition 2.2.

• A history or play is a finite sequence 〈a, b〉, p0, . . . , pn such that:

◦ 〈a, b〉 is a point in the unit square [0, 1]2;
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〈x, 0〉
〈y, 0〉

〈x, 1〉
〈y, 0〉

〈x, 0〉
〈y, 1〉

〈x, 2〉
〈y, 2〉

Figure 4. A strategy guide for 3 that assigns values to x and y

◦ p0 =
〈
φ,H(a, b),∃

〉
;

◦ if pi = 〈∼ψ, s′, α〉 then pi+1 = 〈ψ, s′, α〉, where ∃ = ∀ and ∀ = ∃;
◦ if pi = 〈ψ ∨ χ, s′, α〉 then pi+1 = 〈ψ, s′, α〉 or pi+1 = 〈χ, s′, α〉;
◦ if pi =

〈
∃xV ψ, s′, α

〉
then pi+1 =

〈
ψ, s′[x/m], α

〉
for some m ∈M .

We will refer to the real number a as Eloise’s lottery number, and to b
as Abelard’s lottery number.

• A terminal history or complete play is a history such that H(a, b) is
undefined, in which case neither player wins, or pn = 〈χ, s′, α〉, where χ
is an atomic formula, in which case

◦ player α wins if M, s′ |= χ,

◦ player α wins if M, s′ 6|= χ.

We simply write G(M, φ) when H is the strategy guide that sends every
point in the unit square to the empty assignment.

A strategy for Eloise in the lottery game G(M, H, φ) is a function σ that
assigns to every a ∈ [0, 1] a pure strategy for the semantic game

G
(
M, H(a, ∗), φ

)
.

Eloise follows σ in a history 〈a, b〉, p0, . . . , pn if σ(a)(pi) = pi+1 for all 0 ≤
i < n such that pi ∈ P∃. Similarly, a strategy for Abelard in G(M, H, φ) is
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a function τ that assigns to every b ∈ [0, 1] a pure strategy for

G
(
M, H(∗, b), φ

)
.

Abelard follows τ in 〈a, b〉, p0, . . . , pn if τ(b)(pi) = pi+1 for all 0 ≤ i < n such
that pi ∈ P∀. To avoid confusion, we refer to strategies for lottery games
as lottery-augmented strategies, in contradistinction to pure strategies and
mixed strategies, which will always refer to strategies for semantic games
G(M, X, φ) as in Definition 2.5.

The lottery numbers a and b allow the players to keep track of which pure
strategies they decided to follow at the beginning of the game. It may help
the reader’s intuition to think of Eloise and Abelard not as single players, but
as coalitions of players whose interests are aligned. Before play begins, each
coalition decides which pure strategy they are going to follow (possibly with
the aid of a coin-flip or the roll of a die). No further coordination between
the members of each coalition is allowed during play. However, members
of each coalition may be able to observe some — but not necessarily all — of
the actions taken by their opponents and their allies before it is their own
turn. If so, they are allowed to use their observations when deciding how to
act.

For example, imagine that Eloise is a group of CIA agents, and that
Abelard is an opposing group of KGB agents. Before leaving headquarters,
each group distributes a code book to its members. Once in the field, the
agents await a signal telling them which strategy they should execute. For
instance, if at a certain time BBC Radio 4 broadcasts an advertisement for
a nonexistent brand of laundry detergent, the CIA agents will execute the
strategy on page 19 of their code book. At approximately the same time,
Soviet state television broadcasts an homage to Vladimir Lenin containing a
certain agreed-upon word, telling the KGB agents to execute the strategy on
page 42 of their code book. During the course of the operation, a given CIA
agent may be able to observe the actions taken by some (but not necessarily
all) of her fellow agents. She may also be able to observe certain actions
taken by the opposing agents before executing her assignment. Her actions
might be observed in turn and affect subsequent choices made by friend and
foe alike.

Example 5.4. Suppose the CIA is hiding a defector from the Soviet Union
in one of three safe houses. The KGB is desperately trying to find the
defector, but they only have time to search one of the safe houses before the
CIA smuggles her out of the country. The CIA decides which safe house to
use according to the flip of a fair three-sided coin, so they tell the defector
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〈x, 0〉
〈z, 0〉

〈x, 1〉
〈z, 1〉

〈x, 2〉
〈z, 2〉

Figure 5. Another strategy guide for 3 that assigns values to x and y.

that she has a 2/3 chance of making it to freedom. Unfortunately, the KGB
has a mole inside the CIA who signals the location of the defector to his
comrades. The situation can be modeled by the DF formula,

∀yz x 6= y,

viewed as a subformula of the sentence

∃x∅ ∀zx ∀yz x 6= y,

where x is the location of the defector, y is the safe house searched by the
KGB, and z is the signal sent by the mole. The state of the game after
the first two moves is encoded in the strategy guide H depicted in Figure
5. Because the value of z signals the location of the defector, the defector is
doomed if the KGB follows the obvious strategy defined by τ(b) = (y := z)
for all b ∈ [0, 1].

Let H be a strategy guide for M that assigns values to (at least) the free
variables of φ. For a fixed pair of lottery numbers a, b ∈ [0, 1], let σ be a
pure strategy for Eloise in the semantic game

G〈a,∗〉 = G
(
M, H(a, ∗), φ

)
,

and let τ be a pure strategy for Abelard in

G〈∗,b〉 = G
(
M, H(∗, b), φ

)
.
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If 〈a, b〉 ∈ dom(H) there is a unique terminal history p0, . . . , pn of both games
in which p0 =

〈
φ,H(a, b),∃

〉
, Eloise follows σ, and Abelard follows τ . Notice

that σ and τ are both strategies for

G〈a,b〉 = G
(
M,
{
H(a, b)

}
, φ
)
,

and p0, . . . , pn is the unique terminal history of G〈a,b〉 in which Eloise follows
σ and Abelard follows τ .

Thus, given a pair of strategies 〈σ, τ〉 for the lottery game G(M, H, φ)
we can define a function

u(σ, τ) : dom(H)→ {0, 1}

such that u(σ, τ)(a, b) = 1 if Eloise wins the only complete play of G〈a,b〉 in
which she follows σ(a) and Abelard follows τ(b); otherwise u(σ, τ)(a, b) = 0.
We will use the function u(σ, τ) to calculate the probability that Eloise wins
the lottery game G(M, H, φ) when she follows σ and Abelard follows τ . In
order for the probability that Eloise wins to be well defined, the lottery-
augmented strategies σ and τ must satisfy certain measurability conditions.

Two lottery numbers a, a′ ∈ [0, 1] are said to be equivalent with respect
to a lottery-augmented strategy σ if σ(a) = σ(a′). The equivalence class of
a lottery number a with respect to σ is

[[a]]σ =
{
a′ ∈ [0, 1] : σ(a) = σ(a′)

}
.

A lottery-augmented strategy σ is measurable if [[a]]σ is measurable for all
a ∈ [0, 1].

Definition 5.5. Suppose 〈σ, τ〉 is a pair of measurable strategies for the
lottery game G(M, H, φ). Then the expected value of 〈σ, τ〉 is

U(σ, τ) =
∫

dom(H)
u(σ, τ)(a, b) da db.

Equilibria for lottery games are defined in the obvious way. A pair 〈σ∗, τ∗〉
of measurable lottery-augmented strategies is a lottery equilibrium if for
every pair 〈σ, τ〉 of measurable lottery-augmented strategies,

U(σ, τ∗) ≤ U(σ∗, τ∗) ≤ U(σ∗, τ).

If 〈σ, τ〉 and 〈σ′, τ ′〉 are both lottery equilibria for the same game, then

U(σ, τ) = U(σ′, τ ′)
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for reasons analogous to Proposition 4.4. If the lottery game G(M, H, φ)
has an equilibrium 〈σ∗, τ∗〉 we define

Val(M, H, φ) = U(σ∗, τ∗).

We write M |=ε
H φ if and only if Val(M, H, φ) = ε. When H is the strategy

guide that sends every point in the unit square to the empty assignment, we
simply write Val(M, φ) = ε and M |=ε φ.

The purpose of lottery games is to allow us to simulate the strategic
version of a semantic game using an extensive game, which can then be
decomposed into its subgames. In order to verify that the simulation is
accurate, we must formalize the connection between mixed strategies and
lottery-augmented strategies.

Definition 5.6. Let φ be a DF sentence, and let M be a suitable finite
structure. Given a mixed strategy µ for Eloise in the semantic game G(M, φ)
and an enumeration σ1, . . . , σm of the pure strategies in the support of µ, let
Lot(µ) denote the measurable strategy for G(M, φ) defined by Lot(µ)(a) =
σi if a ∈ Ai, where

A1 =
[
0, µ(σ1)

)
,

A2 =
[
µ(σ1), µ(σ1) + µ(σ2)

)
,

...

Am =

[
m−1∑
i=1

µ(σi), 1

]
.

Thus every mixed strategy can be represented by a lottery-augmented
strategy. Moreover, every pair of mixed strategies can be represented by a
pair of lottery-augmented strategies that yield the same expected utility.

Proposition 5.7. Let φ be a DF sentence, and let M be a suitable finite
structure. If 〈µ, ν〉 is a pair of mixed strategies for G(M, φ), then

U(µ, ν) = U
(
Lot(µ),Lot(ν)

)
.

Proof. Let σ1, . . . , σm enumerate the pure strategies in the support of µ,
and for each 1 ≤ i ≤ m, let Ai be the corresponding interval of length µ(σi)
as in Definition 5.6. Similarly, let τ1, . . . , τn enumerate the pure strategies
in the support of ν, and for each 1 ≤ j ≤ n, let Bj be the corresponding
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interval of length ν(τj). Then

U
(
Lot(µ),Lot(ν)

)
=
∫ 1

0

∫ 1

0
u
(
Lot(µ),Lot(ν)

)
(a, b) da db

=
m∑
i=1

n∑
j=1

∫
Ai×Bj

u(σi, τj) da db

=
m∑
i=1

n∑
j=1

µ(σi) ν(τj)u(σi, τj).

Conversely, every measurable lottery-augmented strategy can be thought
of as a mixed strategy, and every pair of measurable lottery-augmented
strategies yields the same expected utility as a pair of mixed strategies.

Definition 5.8. Given a measurable strategy σ for G(M, φ), let Mix(σ)
denote the mixed strategy for G(M, φ) defined by

Mix(σ)(σ) =
∫
σ−1(σ)

da

for every pure strategy σ for G(M, φ). That is, Mix(σ) tells the appropriate
player to follow each pure strategy σ with probability equal to the measure
of the subset of [0, 1] that σ maps to σ.

Proposition 5.9. If 〈σ, τ〉 is a pair of measurable strategies for G(M, φ),

U(σ, τ) = U
(
Mix(σ),Mix(τ)

)
.

Proof. Let σ1, . . . , σm enumerate the pure strategies in the range of σ, and
let Ai = σ−1(σi). Similarly, let τ1, . . . , τn enumerate the pure strategies in
the range of τ , and let Bj = τ−1(τj). Then

U
(
Mix(σ),Mix(τ)

)
=

m∑
i=1

n∑
j=1

Mix(σ)(σi) Mix(τ)(τj)u(σi, τj)

=
m∑
i=1

n∑
j=1

∫
Ai×Bj

u(σi, τj) da db

=
∫ 1

0

∫ 1

0
u(σ, τ)(a, b) da db.

Strictly speaking, not every measurable lottery-augmented strategy σ
is the representation of a mixed strategy because the preimage of a pure
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strategy under σ may not be an interval. Also, a given mixed strategy µ
may have several representations depending on the enumeration of the pure
strategies in its support. However, we can easily recover the original mixed
strategy from any of its representations.

Lemma 5.10. If µ is a mixed strategy for G(M, φ), then µ = Mix
(
Lot(µ)

)
.

Proof. For every pure strategy σ,

Mix
(
Lot(µ)

)
(σ) =

∫
Lot(µ)−1(σ)

da = µ(σ).

Theorem 5.11. Let φ be a DF sentence, and let M be a suitable finite
structure. If 〈µ∗, ν∗〉 is a Nash equilibrium for the semantic game G(M, φ),
then

〈
Lot(µ∗),Lot(ν∗)

〉
is a lottery equilibrium for G(M, φ), and

Val(M, φ) = Val(M, φ).

Proof. Suppose 〈µ∗, ν∗〉 is a Nash equilibrium for G(M, φ). Then by Propo-
sition 5.7,

Val(M, φ) = U(µ∗, ν∗) = U
(
Lot(µ∗),Lot(ν∗)

)
.

To show that
〈
Lot(µ∗),Lot(ν∗)

〉
is a lottery equilibrium, let 〈σ, τ〉 be a

pair of lottery-augmented strategies for G(M, φ). Then by Proposition 5.7,
Proposition 5.9, and Lemma 5.10,

U
(
σ,Lot(ν∗)

)
= U

(
Mix(σ), ν∗

)
≤ U(µ∗, ν∗) = U

(
Lot(µ∗),Lot(ν∗)

)
.

Similarly,

U
(
Lot(µ∗), τ

)
= U

(
µ∗,Mix(τ)

)
≥ U(µ∗, ν∗) = U

(
Lot(µ∗),Lot(ν∗)

)
.

6. Lottery semantics

Using lottery games we can formulate a compositional semantics for DF logic
that is equivalent to equilibrium semantics on DF sentences. To do so, we
need a way to update our strategy guides to reflect the new state of the
game after each move.

There are three kinds of moves: negation, disjunction, and existential
quantification. Negation tells the players to switch roles, and we can encode
such role-reversals by transposing strategy guides.
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Definition 6.1. Let H be a strategy guide for M that assigns values to the
variables in V . The transposition of H is the function

HT : dom(H)−1 →MV

defined by HT (a, b) = H(b, a).

Proposition 6.2. HT is a strategy guide.

Proof. If H respects the grid 〈A,B〉, then HT respects the grid 〈B,A〉.

Proposition 6.3. If 〈σ, τ〉 is a pair of strategies for G(M, H, ψ), then we
can define strategies σT and τT for G(M, HT,∼ψ) by

τT (a)(χ, s,∃) = τ(a)(χ, s,∀),
σT (b)(χ, s,∀) = σ(b)(χ, s,∃),

respectively, and U
(
τT, σT

)
=
∫
dom(H)da db− U(σ, τ).

Proof. Every play 〈a, b〉, p0, . . . , pn of G(M, H, ψ) in which Eloise follows
σ and Abelard follows τ corresponds to a play

〈b, a〉,
〈
∼ψ,H(a, b), ∃

〉
, p0, . . . , pn

of G(M, HT,∼ψ), where

pi = 〈χ, s, α〉 implies pi = 〈χ, s, α〉.

In particular, every terminal history 〈a, b〉, p0, . . . , pn of G(M, H, ψ) with
pn = 〈χ, s, α〉 corresponds to a terminal history

〈b, a〉,
〈
∼ψ,H(a, b), ∃

〉
, p0, . . . , pn

of G(M, HT,∼ψ) with pn = 〈χ, s, α〉, and vice versa. Thus, for all 〈a, b〉 ∈
dom(H),

u
(
τT, σT

)
(b, a) = 1− u(σ, τ)(a, b).

Therefore,

U
(
τT, σT

)
=
∫

dom
(
HT
)u(τT, σT )(b, a) db da

=
∫

dom(H)
1− u(σ, τ)(a, b) da db

=
∫

dom(H)
da db− U(σ, τ).
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A disjunction prompts the verifier to choose the left or right disjunct. If
he or she chooses the left disjunct, what might have happened had he or she
chosen the right disjunct does not affect the outcome of the current play.
Hence we can split the strategy guide H into two subguides, and consider
each case separately.

Definition 6.4. Let φ be a DF formula, M a finite structure, and V be a
finite set of variables that contains Free(φ). A splitting function for M over
V assigns to each a ∈ [0, 1] a function

Spa : MV → {left, right}.

A splitting function Sp is measurable if for all a ∈ [0, 1], the equivalence class

[[a]]Sp =
{
a′ ∈ [0, 1] : Spa = Spa′

}
is measurable.

If H is a strategy guide for M that assigns values to the variables in V ,
we say that a splitting function Sp for M over V splits H into two functions
H1 and H2 such that

dom(H1) = dom(H) ∩
{
〈a, b〉 ∈ [0, 1]2 : Spa

(
H(a, b)

)
= left

}
,

dom(H2) = dom(H) ∩
{
〈a, b〉 ∈ [0, 1]2 : Spa

(
H(a, b)

)
= right

}
,

and H1, H2 both agree with H on their respective domains.

Proposition 6.5. If Sp is measurable, then H1 and H2 are strategy guides.

Proof. Suppose H respects the grid 〈A,B〉. If Sp is measurable, then every
cell in the partition

A′ =
{
A ∩ [[a]]Sp : A ∈ A, a ∈ [0, 1]

}
is measurable. Hence 〈A′,B〉 is a grid.

To show that H1 and H2 respect 〈A′,B〉, suppose a, a′ ∈ A ∩ [[a]]Sp ∈ A′,
where A ∈ A, and b, b′ ∈ B ∈ B. Then H(a, b) = H(a′, b′) (or both are
undefined) because H respects 〈A,B〉. Furthermore, Spa = Spa′ because
a′ ∈ [[a]]Sp, so if H(a, b) and H(a′, b′) are defined,

Spa
(
H(a, b)

)
= Spa′

(
H(a′, b′)

)
.

Hence both 〈a, b〉 and 〈a′, b′〉 belong to dom(H1), or both belong to dom(H2).
In either case Hi(a, b) = Hi(a′, b′).
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An existential quantifier prompts the verifier to choose the value of the
quantified variable. Thus we need a way to extend (“supplement”) the cur-
rent assignment.

Definition 6.6. Let φ be a DF formula, M a finite structure, and V a finite
set of variables that contains Free(φ). A supplementation function for M
over W ⊆ V assigns to every a ∈ [0, 1] a function

Fa : MW →M.

A supplementation function is measurable if, for every a ∈ [0, 1], the equiv-
alence class

[[a]]F =
{
a′ ∈ [0, 1] : Fa = Fa′

}
is measurable.

If H is a strategy guide for M that assigns values to the variables in V ,
we say that a supplementation function F for M over W ⊆ V supplements
H by assigning a value to x, yielding a function H[x/F ] defined by

H[x/F ](a, b) = H(a, b)
[
x
/
Fa
(
H(a, b)

)]
.

Proposition 6.7. If F is measurable, then H[x/F ] is a strategy guide.

Proof. Suppose H respects the grid 〈A,B〉. If F is measurable, then every
cell in the partition

A′ =
{
A ∩ [[a]]F : a ∈ [0, 1]

}
is measurable. Hence 〈A′,B〉 is a grid.

To show that H[x/F ] respects 〈A′,B〉, suppose a, a′ ∈ A ∩ [[a]]F ∈ A′,
where A ∈ A, and b, b′ ∈ B ∈ B. Then

H[x/F ](a, b) = H(a, b)
[
x
/
Fa
(
H(a, b)

)]
= H(a′, b′)

[
x
/
Fa′
(
H(a′, b′)

)]
= H[x/F ](a′, b′).

Now that we know how to update strategy guides to account for the
effects of the players’ moves, we are ready to prove our main theorem.

Theorem 6.8 (Lottery Semantics). Let φ be a DF formula, M a suitable
finite structure, and H a strategy guide for M that assigns values to the
variables in a finite set V that contains Free(φ). Suppose 〈σ∗, τ∗〉 is an
equilibrium for the lottery game G(M, H, φ).
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• If φ is atomic,

Val(M, H, φ) =
∫
{ 〈a,b〉 :M|=H(a,b) φ }

da db.

• If φ is ∼ψ,

Val(M, H, φ) =
∫

dom(H)
da db−Val

(
M, HT, ψ

)
.

• If φ is ψ1 ∨ ψ2,

Val(M, H, φ) = max
Sp

(
Val(M, H1, ψ1) + Val(M, H2, ψ2)

)
,

where the maximum is taken over all measurable splitting functions Sp
for M over V, and H1, H2 are the strategy guides into which Sp splits
H.

• If φ is ∃xWψ,

Val(M, H, φ) = max
F

Val
(
M, H[x/F ], ψ

)
,

where the maximum is taken over all measurable supplementation func-
tions F for M over W.

Proof. If φ is atomic, every play of the lottery gameG(M, H, φ) is complete
and has the form 〈a, b〉,

〈
φ,H(a, b),∃

〉
, so σ∗ must assign the empty pure

strategy to every a ∈ [0, 1]. Similarly, τ∗ must assign the empty pure strategy
to every b ∈ [0, 1]. Then for all 〈a, b〉 ∈ dom(H),

u(σ∗, τ∗)(a, b) =

{
1 if M |=H(a,b)φ,

0 if M 6|=H(a,b)φ.

Hence

Val(M, H, φ) =
∫

dom(H)
u(σ∗, τ∗)(a, b) da db

=
∫
{ 〈a,b〉 :M|=H(a,b) φ }

da db.

Suppose φ is ∼ψ. Then
〈
τ ′, σ′

〉
is a lottery equilibrium for G(M, HT, ψ),

where σ′ and τ ′ are the lottery-augmented strategies induced by (σ∗)T and
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(τ∗)T, respectively. Furthermore, by Proposition 6.3,

Val(M, H,∼ψ) =
∫

dom
(
HT
)db da− U(τ ′, σ′)

=
∫

dom(H)
da db−Val

(
M, HT, ψ

)
.

Suppose φ is ψ1 ∨ ψ2. Then the splitting function defined by

Sp∗a(s) =

{
left if σ∗(a)(φ, s,∃) = 〈ψ1, s,∃〉,
right if σ∗(a)(φ, s,∃) = 〈ψ2, s,∃〉.

is measurable because for all a ∈ [0, 1],

[[a]]Sp∗ =
⋃{

[[a′]]σ∗ :
(
∀s ∈MV

)[
σ∗(a)(φ, s,∃) = σ∗(a′)(φ, s,∃)

]}
.

There are only finitely many [[a′]]σ∗ , each of which is measurable by hypo-
thesis. Thus Sp∗ splits H into two strategy guides H∗1 and H∗2 such that

dom(H∗i ) =
{
〈a, b〉 ∈ dom(H) : σ∗(a)

(
φ,H(a, b),∃

)
=
〈
ψi, H(a, b),∃

〉}
.

Let σ′ and τ ′ be the strategies for G(M, H∗1 , ψ1) — and let σ′′ and τ ′′

be the strategies for G(M, H∗2 , ψ2) — induced by σ∗ and τ∗, respectively.
Then 〈σ′, τ ′〉 and 〈σ′′, τ ′′〉 are lottery equilibria for their respective games,
else 〈σ∗, τ∗〉 would not be an equilibrium for G(M, H, φ). Moreover,

Val(M, H, ψ1 ∨ ψ2) =
∫

dom(H)
u(σ∗, τ∗)(a, b) da db

=
∫

dom(H∗1 )
u(σ′, τ ′)(a, b) da db

+
∫

dom(H∗2 )
u(σ′′, τ ′′)(a, b) da db

= Val(M, H∗1 , ψ1) + Val(M, H∗2 , ψ2).

Now let Sp be a measurable splitting function that splits H into H1

and H2, and suppose
〈
σ(1), τ (1)

〉
and

〈
σ(2), τ (2)

〉
are equilibria for the games

G(M, H1, ψ1) and G(M, H2, ψ2), respectively. Define strategies σ and τ for
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G(M, H, ψ1 ∨ ψ2) by

σ(a)(ψ1 ∨ ψ2, s,∃) =

{
〈ψ1, s,∃〉 if Spa(s) = left,
〈ψ2, s,∃〉 if Spa(s) = right,

σ(a)(χ, s,∃) =

{
σ(1)(a)(χ, s,∃) if χ is a subformula of ψ1,

σ(2)(a)(χ, s,∃) if χ is a subformula of ψ2,

and

τ(b)(χ, s,∀) =

{
τ (1)(b)(χ, s,∀) if χ is a subformula of ψ1,

τ (2)(b)(χ, s,∀) if χ is a subformula of ψ2.

Then

U(σ, τ) =
∫

dom(H)
u(σ, τ)(a, b) da db

=
∫

dom(H1)
u
(
σ(1), τ (1)

)
(a, b) da db

+
∫

dom(H2)
u
(
σ(2), τ (2)

)
(a, b) da db

= U
(
σ(1), τ (1)

)
+ U

(
σ(2), τ (2)

)
.

The pair 〈σ, τ〉 may not be a lottery equilibrium for G(M, H, ψ1 ∨ ψ2), but
we know that Abelard cannot decrease U(σ, τ) by modifying τ because,
if he could, then either

〈
σ(1), τ (1)

〉
or
〈
σ(2), τ (2)

〉
would not be a lottery

equilibrium. Therefore,

Val(M, H1, ψ1) + Val(M, H2, ψ2) = U(σ, τ)
≤ U(σ, τ∗)
≤ U(σ∗, τ∗)
= Val(M, H, ψ1 ∨ ψ2).

Suppose φ is ∃xWψ. Let F ∗ be the measurable supplementation function
for M over W such that

σ∗(a)
(
∃xWψ, s,∃

)
=
〈
ψ, s

[
x/F ∗a (s)

]
, ∃
〉
,

and consider the strategies σ′ and τ ′ for G
(
M, H[x/F ∗], ψ

)
induced by σ∗

and τ∗, respectively. Then u(σ∗, τ∗) = u(σ′, τ ′); hence

Val(M, H, ∃xV ψ) = U(σ′, τ ′).
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Indeed 〈σ′, τ ′〉 is an equilibrium for G
(
M, H[x/F ∗], ψ

)
because if either

player could improve his or her expected utility in this game, they could
also improve their expected utility in G

(
M, H, ∃xWψ

)
. Thus

Val
(
M, H, ∃xV ψ

)
= Val

(
M, H[x/F ∗], ψ

)
.

Now let F be a measurable supplementation function for M over W , and
suppose 〈σ′′, τ ′′〉 is a lottery equilibrium for G

(
M, H[x/F ], ψ

)
. Extend σ′′

and τ ′′ to strategies σ and τ for G
(
M, H, ∃xWψ

)
by setting

σ(a)
(
∃xWψ, s,∃

)
=
〈
ψ, s

[
x/Fa(s)

]
,∃
〉
,

σ(a)(χ, s,∃) = σ′′(χ, s,∃),

and
τ(χ, s,∀) = τ ′′(χ, s,∀).

Then u(σ, τ) = u(σ′′, τ ′′), and hence U(σ, τ) = U(σ′′, τ ′′). The pair 〈σ, τ〉
may not be a lottery equilibrium for G

(
M, H, ∃xWψ

)
, but we know that

Abelard cannot decrease U(σ, τ) by modifying τ because, if he could, then
〈σ′′, τ ′′〉 would not be a lottery equilibrium for G

(
M, H[x/F ], ψ

)
. Therefore,

Val
(
M, H[x/F ], ψ

)
= U(σ′′, τ ′′)
= U(σ, τ)
≤ U(σ, τ∗)
≤ U(σ∗, τ∗)

= Val
(
M, H, ∃xWψ

)
.

Conclusion

The connection between game-theoretic semantics and trump semantics is
central to the study of first-order logic with imperfect information. Equilib-
rium semantics is a more refined version of game-theoretic semantics that
allows us to assign intermediate truth values to undetermined sentences in
finite models. It is our hope that lottery semantics — which bears the same
relation to equilibrium semantics as trump semantics does to the usual game-
theoretic semantics — will shed similar light on this intriguing new frame-
work.

Several colleagues have noticed the similarity between lottery semantics
and fuzzy logic. We thank an anonymous referee for pointing out recent
work by Cintula and Majer [2] on the game-theoretic semantics of fuzzy
logic. We are eager to analyze the connection between these two different
approaches to logic with imperfect information.
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