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Abstract

In a previous paper, we expressed three families of character sums by certain gen-
eralized Bernoulli functions which in turn were expressed by generalized Bernoulli
numbers via a complicated and indirect process. In this paper, we generalize a
theorem of Ibukiyama to directly express these generalized Bernoulli functions by
generalized Bernoulli numbers. As a result, we can express the three families of
character sums by generalized Bernoulli numbers in a more elegant fashion than
was done before.

1. Introduction

Let χ be a Dirichlet character modulo m, and h be any positive integer prime

to m. We put ζ = exp(2πi/m). Let τ(n, χ) denote the Gaussian sum τ(n, χ) =∑m−1
j=0 χ(j)ζjn. Let a, b be nonnegative integers. In [16], we obtained formulas

expressing the closely related character sums

Ma,b(h, χ) =
m−1∑
j=1

χ(j)

(ζhj − 1)a(ζj − 1)b
,

Sa,b(h, χ; e1, . . . , ea+b) =

m−1∑
j1,··· ,jm+n=1

τ

(
h

a∑
k=1

jk +

b∑
l=1

ja+l, χ

)
je11 · · · j

ea+b
a+b ,

ca,b(h, χ) =

m−1∑
j=1

cota
(
hπj

m

)
cotb

(
πj

m

)
χ(j)

(1)

by generalized Bernoulli functions Ak,χ(x) defined by (2), which were then expressed

by generalized Bernoulli numbers through an indirect and complicated process. In

this paper, by generalizing a theorem of Ibukiyama (Theorem 3), we directly express
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generalized Bernoulli functions Ak,χ(x) by generalized Bernoulli numbers, thereby

enabling a faster, more elegant evaluation of these character sums. Before stating

our results, we need more notation.

For integers r, s with s prime to m, we define the Gaussian sum

τ (r/s, χ) =
∑

j (modm)

χ(j)ζjrs
−1

,

where s−1 is regarded as an element of Z/mZ such that ss−1 ≡ 1 (mod m), and j

runs over a complete residue system modulo m. We will write τ(χ) for τ(1, χ). We

also extend the definition of χ by multiplicativity by defining χ(r/s) = χ(rs−1).

For x ∈ Q with denominator prime to m, we define two types of generalized

Bernoulli functions Ak,χ(x), Bk,χ(x) by the generating functions

m−1∑
j=0

τ(j + x, χ)te(j+x)t

emt − 1
=

∞∑
k=0

Ak,χ(x)
tk

k!
,

m−1∑
j=0

χ(j + x)te(j+x)t

emt − 1
=

∞∑
k=0

Bk,χ(x)
tk

k!
.

(2)

Note that if χ is primitive, then Ak,χ(x) = τ(χ)Bk,χ(x), and if χ is trivial (i.e.,

m = 1), then Ak,χ(x), Bk,χ(x) both reduce to the ordinary Bernoulli polynomials

Bk(x) defined by

tetx

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
.

We define the generalized Bernoulli numbers Ak,χ, Bk,χ and ordinary Bernoulli

numbers Bk by Ak,χ = Ak,χ(0), Bk,χ = Bk,χ(0), and Bk = Bk(0). We note that

Ak,χ, Bk,χ vanish whenever χ(−1) 6= (−1)k unless k = 1 and χ is principal or

trivial, respectively, in which case A1,χ = φ(m)B1 if χ is principal (see Lemma 5)

and B1,χ = B1 if χ is trivial, where φ denotes the Euler phi function.

Remark. The generalized Bernoulli functions Bk,χ(x) were introduced by Snyder

[19] in connection with p-adic Dedekind sums and the generalized Bernoulli func-

tions Ak,χ(x) were introduced by the present author in [16] to evaluate the character

sums given by (1).

Corresponding to the generalized Bernoulli functions Ak,χ(x), Bk,χ(x), we have

the periodic generalized Bernoulli functions Ak,χ(x), Bk,χ(x) given by Ak,χ(x) =

Ak,χ(x − [x]), Bk,χ(x) = Bk,χ(x − [x]), where [x] denotes the greatest integer not

exceeding x.

For any natural number l and any integer u with u | l, denote by lu the u-primary

part of l, that is, the maximum integer which divides l and is prime to u. For any
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natural number n, we denote by Y (n) the set of primitive Dirichlet characters

modulo n. We denote by φ Euler’s phi function. The following is Ibukiyama’s

Theorem 2 in [9].

Theorem 1 ([9, Theorem 2]). Let χ be a nontrivial, primitive Dirichlet character

modulo m. Let l be a natural number prime to m and c be a natural number prime

to l with 1 ≤ c ≤ l − 1. If χ is nontrivial and primitive, we get

m−1∑
a=0

χ(la+ c)a =
m

φ(l)

∑
u|l

∑
δ∈Y (u)

δ(c−1)B1,δχ

∏
q|lu

q prime

(1− χ(q)δ(q))

 .

In [13], we generalized this theorem to express Bk,χ(x) by generalized Bernoulli

numbers Bk,δχ.

Theorem 2 ([13, Theorem 3.1]). Let χ be a Dirichlet character modulo m. Let l

be a natural number prime to m and c be any integer prime to l. We get

Bk,χ

(c
l

)
=

χ(l)

φ(l)lk−1

∑
u|l

∑
δ∈Y (u)

δ(c−1)Bk,δχ
∏
q|lu

q prime

(1− qk−1χ(q)δ(q))

 .

Remark. To see how Theorem 1 follows from Theorem 2, observe that for 1 ≤ c ≤
l − 1 and χ nontrivial and primitive, we have

∑m−1
a=0 χ(la+ c)a = χ(l)B1,χ (c/l).

In this paper, we generalize Ibukiyama’s theorem to express Ak,χ(x) by gener-

alized Bernoulli numbers Bk,δψ, where ψ is the primitive Dirichlet character which

induces χ.

Theorem 3. Let χ be a Dirichlet character modulo m. Let ψ be the primitive

Dirichlet character modulo f which induces χ. Let l be a natural number prime to

m and c be any integer prime to l. Setting

Jk,χ =

(
m

f

)k ∏
p|m
p-f

p prime

(
1− ψ(p)

pk

)
,

we have

Ak,χ

(c
l

)
=
τ(ψ)ψ(l)

φ(l)lk−1

∑
u|l

∑
δ∈Y (u)

δ(c−1m/f)Jk,δχBk,δψ

∏
q|lu

q prime

(1− qk−1ψ(q)δ(q))

 .
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Remark. For primitive character χ, we have Ak,χ(c/l) = τ(χ)Bk,χ(c/l) and it is

clear how Theorem 3 reduces to Theorem 2 in this case.

Expressing Ak,χ(c/l) by generalized Bernoulli numbers directly by Theorem 3

is a significant improvement over the indirect method given in [16]. To illustrate

the significance of this, we describe how Ak,χ(c/l) was expressed by generalized

Bernoulli numbersBk,δψ in [16]. We first expressedAk,χ(c/l) as a linear combination

of generalized Bernoulli functions Bk,ψ(x) as follows (see [16, Theorem 3.2]):

Ak,χ

(c
l

)
= Rkqk−1µ(q)τ(ψ)

∑
e (mod q)

µ((le+ c0, q))φ((le+ c0, q))Bk,ψ

(
le+ c0
lq

)
,

(3)

where µ is the Möbius function and

q =
∏
p|m
p-f

p prime

p, R =
m

fq
,

and then applied Theorem 2 to each of the generalized Bernoulli functions on the

right-hand side of (3). Therefore, we have reduced the problem in [16] of evaluating

a complicated sum of generalized Bernoulli functions Bk,ψ(x) with denominator lq

to that of evaluating a single generalized Bernoulli function Ak,χ(x) with denomina-

tor l. This is a substantial improvement because the expressions given by Theorems

2 and 3 get increasingly more complicated as the denominator gets larger. Conse-

quently, Theorem 3 yields a faster, more elegant evaluation of the character sums

given by (1), examples of which are given in Section 4.

The layout of this paper is as follows. In Section 2, we review some properties of

the generalized Bernoulli functions Ak,χ(x), Bk,χ(x) such as their finite sum repre-

sentations and multiplication formulas. In Section 3, we prove the main theorem of

this paper (Theorem 3) which directly expresses Ak,χ(c/l) by generalized Bernoulli

numbers. In Section 4, we give examples using Theorem 3 to express the charac-

ter sums Ma,b(h, χ), Sa,b(h, χ; e1, . . . , ea+b), and ca,b(h, χ) by generalized Bernoulli

numbers.

2. Properties of Generalized Bernoulli Functions Ak,χ(x), Bk,χ(x)

We keep the notation used previously. Recall that χ is a Dirichlet character modulo

m and ψ is the Dirichlet character modulo f which induces χ. In this section,

we review some basic properties of the generalized Bernoulli functions Ak,χ(x),

Bk,χ(x) such as their finite sum representations and multiplication formulas. With

the exception of Corollary 6, we omit the proofs as they already appear in [16, 17].
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From the definitions of Ak,χ(x), Bk,χ(x) given by (2), we get the following finite

sum representations

Ak,χ(x) = mk−1
m−1∑
j=0

Bk

(
j + x

m

)
τ(j + x, χ),

Bk,χ(x) = mk−1
m−1∑
j=0

Bk

(
j + x

m

)
χ(j + x),

or equivalently, for any natural number s prime to m and any integer r, we have

Ak,χ

(r
s

)
= χ(s)mk−1

m−1∑
j=0

Bk

(
sj + r

sm

)
τ(sj + r, χ),

Bk,χ

(r
s

)
= χ(s)mk−1

m−1∑
j=0

Bk

(
sj + r

hm

)
χ(sj + r).

Similarly, we have the following useful formulations for Ak,χ(r/s), Bk,χ(r/s):

Ak,χ

(r
s

)
= χ(s)mk−1

∑
j (modm)

Bk

(
sj + r

sm

)
τ(sj + r, χ),

Bk,χ

(r
s

)
= χ(s)mk−1

∑
j (modm)

Bk

(
sj + r

sm

)
χ(sj + r).

We state the multiplication formula for periodic Bernoulli functions which follows

from Raabe’s multiplication formula for ordinary Bernoulli polynomials:

Bk(nx) = nk−1
∑

j (modn)

Bk

(
x+

j

n

)
(n ∈ N). (4)

As a natural generalization of Equation (4), we have the multiplication formula for

periodic generalized Bernoulli functions.

Lemma 4 ([16, Lemma 2.1]). Let χ,m be as above. Let n ∈ N with (n,m) = 1 and

x ∈ Q with denominator relatively prime to m. We have

Ak,χ(nx) = nk−1χ(n)
∑

j (modn)

Ak,χ

(
x+

j

n

)
,

Bk,χ(nx) = nk−1χ(n)
∑

j (modn)

Bk,χ

(
x+

j

n

)
.

We note that when χ is trivial, Lemma 4 reduces to Equation (4).
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We now describe the relationship between the two types of generalized Bernoulli

numbers Ak,χ and Bk,ψ.

Lemma 5 ([17, Lemma 2.1]). Let χ, ψ,m, f be as above. We have

Ak,χ = Bk,ψ τ(ψ)

(
m

f

)k ∏
p|m
p-f

p prime

(
1− ψ(p)

pk

)
.

Corollary 6. Let χ, ψ,m, f be as above. Let δ be a primitive Dirichlet character

modulo u with (u,m) = 1. We have

Ak,δχ = Bk,δψ δ(f)χ(u)τ(δ)τ(ψ)

(
m

f

)k ∏
p|m
p-f

p prime

(
1− δ(p)ψ(p)

pk

)
.

Proof. Since δψ is the primitive Dirichlet character inducing δχ and τ(δψ) =

δ(f)χ(u)τ(δ)τ(ψ), the corollary follows immediately from Lemma 5.

3. Proof of Theorem 3

Fix a Dirichlet character χ modulo m. For any natural number l prime to m and

any integer c, we have

Ak,χ

(c
l

)
= χ(l)mk−1

∑
j (modm)

Bk

(
lj + c

lm

)
τ(lj + c, χ).

The aim of this section is to obtain a formula expressing Ak,χ(c/l) by generalized

Bernoulli numbers using only elementary methods from algebra and number theory.

For any natural number l and any integer u with u | l, denote by lu the u-primary

part of l, that is, the maximum integer which divides l and is prime to u. For any

Dirichlet character δ, we denote by fδ the conductor of δ. For any natural number n,

we denote by X(n) the set of primitive Dirichlet characters δ such that n is divisible

by fδ, and by Y (n) the set of primitive Dirichlet characters with conductor n. Let

φ denote Euler’s phi function.

To prove Theorem 3, we prepare several lemmas which are generalizations of

Lemmas 1-3 in [9].

Lemma 7. For a natural number l prime to m and any δ ∈ X(l), we get

δ(m)χ(l/fδ)l
k−1

∑
c (mod l)

Ak,χ

(c
l

)
τ(c, δ) = Ak,δχ.
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Proof. Since τ(c, δ) = τ(lj + c, δ) and τ(n, χ)τ(n, δ) = χ(fδ)δ(m)τ(n, δχ) (n ∈ Z),

we have

δ(m)χ(l/fδ)l
k−1

∑
c (mod l)

Ak,χ

(c
l

)
τ(c, δ)

= δ(m)χ(fδ)(lm)k−1
∑

c (mod l)

∑
j (modm)

Bk

(
lj + c

lm

)
τ(lj + c, χ)τ(lj + c, δ)

= (lm)k−1
∑

c (mod l)

∑
j (modm)

Bk

(
lj + c

lm

)
τ(lj + c, δχ)

= (lm)k−1
∑

n (mod lm)

Bk

( n

lm

)
τ(n, δχ).

Since the Gaussian sum τ(n, δχ) is periodic modulo fδm, we get

δ(m)χ(l/fδ)l
k−1

∑
c (mod l)

Ak,χ

(c
l

)
τ(c, δ)

= (lm)k−1
∑

a (mod fδm)

∑
b (mod l/fδ)

Bk

(
fδmb+ a

lm

)
τ(fδmb+ a, δχ)

= (lm)k−1
∑

a (mod fδm)

 ∑
b (mod l/fδ)

Bk

(
b

l/fδ
+

a

lm

) τ(a, δχ).

By the multiplication formula (4), we obtain

δ(m)χ(l/fδ)l
k−1

∑
c (mod l)

Ak,χ

(c
l

)
τ(c, δ)

= (lm)k−1
(
fδ
l

)k−1 ∑
a (mod fδm)

Bk

(
a

fδm

)
τ(a, δχ)

= Ak,δχ.

Following the method of Ibukiyama in [9], we obtain an inversion formula. We

fix a natural number l which is prime to m and put L =
∏
q|l q, where q runs over

primes. For any n | l, denote by ln the n-primary part of l.

Lemma 8. For any fixed number d ∈ (Z/lZ)∗, we get∑
n|L

φ(ln)χ(lnn)(lnn)k−1Ak,χ

(
e

ln

)
=

∑
δ∈X(l)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ,

where e is an integer determined by ne ≡ d mod ln.
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Proof. We prove this lemma by taking the sum over δ ∈ X(l) of both sides of the

formula in Lemma 7. For any integer c with 0 ≤ c ≤ l−1, there exists a unique n | L
such that n | c and (c, L/n) = 1. For such c, we have

∑
δ∈X(l) δ(c) =

∑
δ∈X(ln)

δ(c),

since δ(c) = 0 whenever (fδ, n) > 1. Denote by A(n) the following set of integers:

A(n) = {c ∈ Z : 0 ≤ c ≤ l − 1, n | c, (c, L/n) = 1}.

Then, applying Lemma 7, noting that τ(c, δ) = δ(c)τ(δ), we get∑
δ∈X(l)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ = χ(l)lk−1

∑
δ∈X(l)

∑
c (mod l)

δ(d−1c)Ak,χ

(c
l

)
= χ(l)lk−1

∑
n|L

∑
c∈A(n)

∑
δ∈X(ln)

δ(d−1c)Ak,χ

(c
l

)
.

(5)

Observe that ∑
δ∈X(ln)

δ(d−1c) =

{
φ(ln), if d ≡ c mod ln,

0, otherwise.

We denote by C(n) the following set of integers:

C(n) = {c ∈ Z : 0 ≤ c ≤ l − 1, n | c, (c, L/n) = 1, and c ≡ d mod ln}.

Then, from (5), we get∑
δ∈X(l)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ = χ(l)lk−1

∑
n|L

φ(ln)
∑

c∈C(n)

Ak,χ

(c
l

)
. (6)

Let e be an integer such that ne ≡ d mod ln. Then (e, ln) = 1 since (d, l) = 1.

Hence, it follows that

C(n) = {n(lna+ e) : a ∈ Z, 0 ≤ a ≤ l/(lnn)− 1}.

By the multiplication formula Lemma 4, we obtain

χ(l)lk−1
∑

c∈C(n)

Ak,χ

(c
l

)
= χ(l)lk−1

∑
a (mod l/lnn)

Ak,χ

(
n(lna+ e)

l

)

= χ(lnn)(lnn)k−1Ak,χ

(
e

ln

)
.

Thus, from (6), we get∑
δ∈X(l)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ =

∑
n|L

φ(ln)χ(lnn)(lnn)k−1Ak,χ

(
e

ln

)
.
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Lemma 9. We fix a natural number l prime to m and an integer c prime to l. We

define L and ln for n | l in the same way as in Lemma 8. Then, we get

φ(l)χ(l)lk−1Ak,χ

(c
l

)
=
∑
n|L

µ(n)χ(n)nk−1
∑

δ∈X(ln)

χ(fδ)δ(m
−1n−1c)

τ(δ)
Ak,δχ,

where µ is the Möbius function.

Proof. For u | v | L and any d ∈ (Z/lZ)∗, we put

g(u, v, d) = φ (l/lu)χ (lv/(luu)) (lv/(luu))
k−1

Ak,χ

(
w

l/lu

)
,

where w is determined by (v/u)w ≡ d mod (l/lu). Also, we put

f(v, d) =
∑

δ∈X(l/lv)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ.

Next, we apply Lemma 8 for (v, l/lv) instead of (L, l). Noting that (l/lv)m = lm/lv
for any m | v, we get

∑
n|v

φ(ln/lv)χ((ln/lv)n)((ln/lv)n)k−1Ak,χ

(
e

ln/lv

)
=

∑
δ∈X(l/lv)

χ(fδ)δ(m
−1d)

τ(δ)
Ak,δχ,

where e is determined by ne ≡ d mod (ln/lv). For each n | v, we define u by nu = v.

Then ln/lv = l/lu, and we get∑
u|v

g(u, v, d) = f(v, d).

For any u | v | L, we putG(u) = g(u, L, c) and F (u) = (L/u)
k−1

χ(u−1L)f(v, L−1uc).

Observe that g(u, L, c) = (L/v)
k−1

χ(v−1L)g(u, v, L−1vc), where L−1vc is regarded

as an element of (Z/lvZ)∗. Hence, we get∑
u|v

G(u) = (L/v)
k−1

χ(v−1L)
∑
u|v

g(u, v, L−1vc)

= (L/v)
k−1

χ(v−1L)f(v, L−1vc)

= F (v).

Applying the Möbius inversion formula for v = L, we get

G(L) =
∑
m|L

µ(m)F

(
L

m

)
.
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Thus, we obtain

φ(l)χ(l)lk−1Ak,χ

(c
l

)
=
∑
n|L

µ(n)χ(n)nk−1
∑

δ∈X(ln)

χ(fδ)δ(m
−1n−1c)

τ(δ)
Ak,δχ.

We are now in position to prove Theorem 3.

Proof of Theorem 3. We define L and ln for n | l in the same way as in Lemma 8.

From Lemma 9, we get

φ(l)χ(l)lk−1Ak,χ

(c
l

)
=
∑
n|L

∑
δ∈X(ln)

µ(n)nk−1χ(nfδ)δ(m
−1n−1c)

τ(δ)
Ak,δχ

=
∑
n|l

∑
u|ln

∑
δ∈Y (u)

µ(n)nk−1χ(nu)δ(m−1n−1c)

τ(δ)
Ak,δχ.

Observe that u | ln for n | l is equivalent to n | lu for u | l. Thus, we have

φ(l)χ(l)lk−1Ak,χ

(c
l

)
=
∑
u|l

∑
n|lu

∑
δ∈Y (u)

µ(n)nk−1χ(nu)δ(m−1n−1c)

τ(δ)
Ak,δχ

=
∑
u|l

∑
δ∈Y (u)

δ(m−1c)χ(u)

τ(δ)
Ak,δχ

∏
q|lu

q prime

(1− qk−1χ(q)δ(q)).

Applying Corollary 6 to express Ak,δχ by generalized Bernoulli numbers Bk,δχ, we

obtain Theorem 3.

4. The Evaluation of Ma,b(h, χ), Sa,b(h, χ; e1, . . . , ea+b), and ca,b(h, χ)

We remind the reader of the notation. Let χ be a Dirichlet character modulo m,

and h be any positive integer prime to m. We put ζ = exp(2πi/m). Let τ(n, χ)

denote the Gaussian sum τ(n, χ) =
∑m−1
j=0 χ(j)ζjn. Let a, b be nonnegative integers.

We assume that m > 1 and a + b ≥ 1 to exclude the trivial cases. Without a loss

of generality, we further assume that a ≥ 1. In this section, we give examples

expressing the closely related character sums

Ma,b(h, χ) =

m−1∑
j=1

χ(j)

(ζhj − 1)a(ζj − 1)b
,
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Sa,b(h, χ; e1, . . . , ea+b) =

m−1∑
j1,··· ,jm+n=1

τ

(
h

a∑
k=1

jk +

b∑
l=1

ja+l, χ

)
je11 · · · j

ea+b
a+b ,

ca,b(h, χ) =

m−1∑
j=1

cota
(
hπj

m

)
cotb

(
πj

m

)
χ(j)

by generalized Bernoulli numbers. We first review the results in [16] expressing

these sums by periodic generalized Bernoulli functions Ak,χ(x).

Remark. The sums Ma,b(h, χ) and Sa,b(h, χ; e1, . . . , ea+b) are natural general-

izations of sums introduced and studied by Berndt [6] and Arakawa–Ibukiyama–

Kaneko [3] in the context of the theory of modular forms. For examples, we refer

the interested reader to [2, 3, 8, 9, 10, 11, 12, 13, 14, 15, 18, 20, 21]. The sum

ca,b(h, χ) is a variation of trigonometric sums first investigated by Ramanujan in

connection to certain theta function identities. For examples, we refer the interested

reader to [4, 5, 7].

For positive integers n and k, we denote by
[
n
k

]
and

{
n
k

}
the Stirling numbers of

the first and second kind, respectively. That is, Stirling’s cycle numbers
[
n
k

]
denote

the number of permutations of n letters (elements of the symmetric group of degree

n) that consist of k disjoint cycles, and Stirling’s subset numbers
{
n
k

}
denote the

number of ways to divide a set of n elements into k nonempty sets.

Theorem 10 ([16, Theorem 4.1]). Let χ,m, h, a, b be as above. We have

Ma,b(h, χ) =
(−1)a+b−1χ(h)

(a+ b− 1)!

×
a+b∑
j=1

b(h−1)∑
c=0

Ch(b, c)

(
a+b−j∑
r=0

(−1)r

r + j

[
a+ b

r + j

](
r + j

j

)( c
h

)r)
Aj,χ

( c
h

)
,

where

Ch(b, c) =


1 if b = 0,

[c/h]∑
k=0

(−1)k
(
b

k

)(
b− 1 + c− hk

b− 1

)
if b ≥ 1.

Theorem 11 ([16, Theorem 4.2]). Let χ,m, h, a, b be as above. We have

Sa,b(h, χ; e1, . . . , ea+b) = (−1)e1+···+ea+b

×
∑

1≤kj≤ej
1≤lj≤ej−kj+1

1≤j≤a+b

(
a+b∏
i=1

(−m)li
(
ei
li

){
ei − li + 1

ki

}
(ki − 1)!

)

×Mk1+···+ka,ka+1+···+ka+b(h, χ).
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Remark. In the case where ej = 1 for j = 1, . . . , a+ b, we get

Sa,b(h, χ; 1, . . . , 1) = ma+bMa,b(h, χ).

Theorem 12 ([16, Theorem 4.3]). Let χ,m, h, a, b be as above. We have

ca,b(h, χ) = ia+b
a∑
j=0

b∑
k=0

2j+k
(
a

j

)(
b

k

)
Mj,k(h, χ).

As a corollary, we obtained a formula for cotangent power sums considered by

Apostol [1], Berndt [6] and others.

Corollary 13 ([16, Corollary 4.4]). Let χ,m, a be as above. We have

ca,0(1, χ) =

m−1∑
j=1

cota
(
πj

m

)
χ(j)

= −ia
a∑
k=1

1

k

 a∑
j=k

(−2)j
(
a
j

)[
j
k

]
(j − 1)!

Ak,χ +

{
iaφ(m) if χ is principal,

0 otherwise.

Since the sums Ma,b(h, χ), Sa,b(h, χ; e1, . . . , ea+b), and ca,b(h, χ) can be expressed

by periodic generalized Bernoulli functions Ak,χ(x), and Ak,χ(x) are expressible by

generalized Bernoulli numbers by virtue of Theorem 3, so are the sums Ma,b(h, χ),

Sa,b(h, χ; e1, . . . , ea+b), and ca,b(h, χ). We now give examples expressing Ma,b(h, χ),

Sa,b(h, χ; e1, . . . , ea+b), and ca,b(h, χ) by generalized Bernoulli numbers.

We note the following useful fact that follows from the multiplication formula

Lemma 4: ∑
c (modh)

Ak,χ(c/h) =
χ(h)

hk−1
Ak,χ. (7)

Proposition 14. Let m > 1 be a natural number prime to 4 and χ be a Dirichlet

character modulo m. Let ψ be the primitive Dirichlet character modulo f which

induces χ. We denote by δ the unique primitive Dirichlet character modulo 4. Let

Jk,χ be defined as in Theorem 3. Let a be a nonnegative integer. We have
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(i) M1,1(4, χ) =

m−1∑
j=1

χ(j)

(ζ4j − 1)(ζj − 1)

= −τ(ψ)

(
1 + ψ(4)

2
J1,χB1,ψ +

δ(m/f)

4
J1,δχB1,δψ +

1

8
J2,χB2,ψ

)
,

(ii) M2,1(4, χ) =

m−1∑
j=1

χ(j)

(ζ4j − 1)2(ζj − 1)

= τ(ψ)

(
13 − ψ(2) + 20ψ(4)

32
J1,χB1,ψ +

δ(m/f)

4
J1,δχB1,δψ +

1 + 2ψ(4)

8
J2,χB2,ψ

+
δ(m/f)

32
J2,δχB2,δψ +

1

96
J3,χB3,ψ

)
,

(iii) S1,1(4, χ; 1, 1) =

m−1∑
j,k=1

τ(4j + k, χ)jk

= −m2τ(ψ)

(
1 + ψ(4)

2
J1,χB1,ψ +

δ(m/f)

4
J1,δχB1,δψ +

1

8
J2,χB2,ψ

)
,

(iv) S1,1(4, χ; 2, 1) =

m−1∑
j,k=1

τ(4j + k, χ)j2k

= −m2τ(ψ)

(
8m− 3 − ψ(2) + 4(2m+ 1)ψ(4)

16
J1,χB1,ψ +

mδ(m/f)

4
J1,δχB1,δψ

+
m+ 4ψ(4)

8
J2,χB2,ψ +

δ(m/f)

16
J2,δχB2,δψ +

1

48
J3,χB3,ψ

)
,

(v) c1,1(4, χ) =

m−1∑
j=1

cot

(
4πj

m

)
cot

(
πj

m

)
χ(j)

= τ(ψ)

(
δ(m/f)J1,δχB1,δψ +

1

2
J2,χB2,ψ

)
−
{
φ(m) if χ is principal

0 otherwise
,

(vi) c2,1(4, χ) =

m−1∑
j=1

cot2
(

4πj

m

)
cot

(
πj

m

)
χ(j)

= −iτ(ψ)

(
5 − ψ(2) + 4ψ(4)

4
J1,χB1,ψ +

δ(m/f)

4
J2,δχB2,δψ +

1

12
J3,χB3,ψ

)

−
{
iφ(m) if χ is principal

0 otherwise
,

(vii) ca,0(1, χ) =

m−1∑
j=1

cota
(
πj

m

)
χ(j)

= −iaτ(ψ)

a∑
k=1

1

k

 a∑
j=k

(−2)j
(a
j

)[j
k

]
(j − 1)!

 Jk,χBk,ψ +

{
iaφ(m) if χ is principal

0 otherwise
.
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Proof. By Theorem 10 together with the help of (7), we get

M1,1(4, χ) = −A1,χ −
1

8
A2,χ +

ψ(4)

4

3∑
c=1

cA1,χ(c/4),

M2,1(4, χ) = A1,χ +
3

16
A2,χ +

1

96
A3,χ

+ ψ(4)

3∑
c=1

(
−3c

8
+
c2

32

)
A1,χ(c/4)− ψ(4)

8

3∑
c=1

cA2,χ(c/4).

Since Ak,χ = τ(ψ)Jk,χBk,ψ by Lemma 5, this becomes

M1,1(4, χ) = −τ(ψ)

(
J1,χB1,ψ +

1

8
J2,χB2,ψ

)
+
ψ(4)

4

3∑
c=1

cA1,χ(c/4),

M2,1(4, χ) = τ(ψ)

(
J1,χB1,ψ +

3

16
J2,χB2,ψ +

1

96
J3,χB3,ψ

)
+ ψ(4)

3∑
c=1

(
−3c

8
+
c2

32

)
A1,χ(c/4)− ψ(4)

8

3∑
c=1

cA2,χ(c/4).

(8)

By Theorem 3, noting that δ = δ so that Jk,δχ = Jk,δχ, we have

Ak,χ(1/4) =
τ(ψ)ψ(4)

2 · 4k−1
(

(1− 2k−1ψ(2))Jk,χBk,ψ + δ(m/f)Jk,δχBk,δψ

)
,

Ak,χ(2/4) = Ak,χ(1/2) =
τ(ψ)ψ(2)

2k−1
(1− 2k−1ψ(2))Jk,χBk,ψ,

Ak,χ(3/4) =
τ(ψ)ψ(4)

2 · 4k−1
(

(1− 2k−1ψ(2))Jk,χBk,ψ − δ(m/f)Jk,δχBk,δψ

)
(k ∈ N).

Thus, for j, k ∈ N, we have

ψ(4)
3∑
c=1

cj Ak,χ(c/4)

=
τ(ψ)

2 · 4k−1

(
(1 + 2j+kψ(2) + 3j)(1− 2k−1ψ(2))Jk,χBk,ψ + (1− 3j)δ(m/f)Jk,δχBk,δψ

)
.

Using this to evaluate the summations on the right-hand side of (8), we obtain the
assertions (i) and (ii).

By Theorem 11, we have

S1,1(4, χ; 1, 1) = m2M1,1(4, χ),

S1,1(4, χ; 2, 1) = m2
(

(m− 2)M1,1(4, χ)− 2M2,1(4, χ)
)
.

Thus the assertions (iii), (iv) follow from (i), (ii).
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By Theorem 12, we have

c1,1(4, χ) = (−1)
(
M0,0(4, χ) + 2M0,1(4, χ) + 2M1,0(4, χ) + 4M1,1(4, χ)

)
,

c2,1(4, χ) = −i
(
M0,0(4, χ) + 2M0,1(4, χ) + 4M1,0(4, χ) + 8M1,1(4, χ)

+ 4M2,0(4, χ) + 8M2,1(4, χ)
)
.

(9)

Observe that M0,0(4, χ) = φ(m) if χ is principal, and 0 otherwise, and by Theorem
10 and Lemma 5, we have

M1,0(4, χ) = ψ(4)A1,χ = ψ(4)τ(ψ)J1,χB1,ψ,

M0,1(4, χ) = ψ(4)M1,0(4, χ) = A1,χ = τ(ψ)J1,χB1,ψ,

M2,0(4, χ) = −ψ(4)

(
A1,χ +

1

2
A2,χ

)
= −ψ(4)τ(ψ)

(
J1,χB1,ψ +

1

2
J2,χB2,ψ

)
.

Plugging these values back into (9), the assertions (v), (vi) follow from (i), (ii).

SinceAk,χ = τ(ψ)Jk,χBk,ψ by Lemma 5, the assertion (vii) follows from Corollary
13.

Remark. In [16, Proposition 5.1], we considered the special case of χ being an
imprimitive Dirichlet character modulo m = f · 3n for some positive integer n with
(f, 12) = 1, and ψ being the primitive Dirichlet character modulo f which induces
χ. Since

Jk,χ = 3k(n−1)(3k − ψ(3)),

Jk,δχ = 3k(n−1)(3k + ψ(3)) (k ∈ N),

we see that Proposition 14 implies [16, Proposition 5.1].

References

[1] T. Apostol, Dirichlet L-functions and character power sums, J. Number Theory 2 (1970),
223–234.

[2] T. Arakawa, Special values of L-functions associated with the space of quadratic forms and
the representation of Sp(2n,Fp) in the space of Siegel cusp forms, Automorphic Forms and
Geometry of Arithmetic Varieties (Adv. Stud. Pure Math. 15), Kinokuniya and Academic
Press, 1989, 99–169.

[3] T. Arakawa, T. Ibukiyama, and M. Kaneko, Bernoulli Numbers and Zeta Functions, Springer,
2014.

[4] M. Beck, B. C. Berndt, O. Chan, and A. Zaharescu, Determinations of analogues of Gauss
sums and other trigonometric sums, Int. J. Number Theory 3 (2005), 333–356.



INTEGERS: 24A (2024) 16

[5] M. Beck and M. Halloran, Finite trigonometric character sums via discrete Fourier analysis,
Int. J. Number Theory 6(1) (2010), 51–67.

[6] B. C. Berndt, An elementary proof of some character sum identities of Apostol, Glasg. Math.
J. 14(1) (1973), 50–53.

[7] B. C. Berndt and A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann.
330 (2003), 551–575.

[8] K. Hashimoto, Representations of the finite symplectic group Sp(4,Fp) in the spaces of Siegel
modular forms, Contemp. Math. 53 (1986), 253–276.

[9] T. Ibukiyama, On some elementary character sums, Comment. Math. Univ. St. Pauli 47(1)
(1998), 7–13.

[10] T. Ibukiyama and H. Saito, On L-functions of ternary zero forms and exponential sums of
Lee and Weintraub, J. Number Theory 48(2) (1994), 252–257.

[11] B. Isaacson, Character sums of Lee and Weintraub, J. Number Theory 191 (2018), 316–344.

[12] B. Isaacson, Special values of Ibukiyama-Saito L-functions, Kyushu J. Math. 72(2) (2018),
343–373.

[13] B. Isaacson, On a generalization of a theorem of Ibukiyama, Comment. Math. Univ. St. Pauli
67(1) (2019), 1–16.

[14] B. Isaacson, The Tsukano conjectures on exponential sums, Osaka J. Math. 57(3) (2020),
543–561.

[15] B. Isaacson, A twisted generalization of the classical Dedekind sum, Int. J. Number Theory
17(2) (2021), 513–528.

[16] B. Isaacson, Three imprimitive character sums, Integers 21 (2021), #A103.

[17] B. Isaacson, Generalized Bernoulli numbers, cotangent power sums, and higher-order arctan-
gent numbers, Combinatorial and Additive Number Theory V (2022), 253–261.

[18] R. Lee and S. H. Weintraub, A generalization of a theorem of Hecke to the Siegel space of
degree two, Contemp. Math. 96 (1989), 243–259.

[19] C. Snyder, P -adic interpolation of Dedekind sums, Bull. Austral. Math. Soc. 38(2) (1988),
293–301.

[20] R. Tsushima, The spaces of Siegel cusp forms of degree two and the representation of
Sp(2,Fp), Proc. Japan Acad. Ser. A Math. Sci. 60(6) (1984), 209-221.

[21] R. Tsushima, Dimension formula for the spaces of Siegel cusp forms and a certain exponential
sum, Mem. Inst. Sci. Tech. Meiji Univ. 36 (1997), 1–56.


	Introduction
	Properties of Generalized Bernoulli Functions Ak,(x), Bk,(x)
	Proof of Theorem 3
	The Evaluation of Ma,b(h,), Sa,b(h,;e1,…,ea+b), and ca,b(h,)

