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Abstract

A 1976 result from Norton may be used to give an asymptotic (but not explicit)
description of the constant in Mertens’ second theorem for primes in arithmetic
progressions. Assuming the Generalized Riemann Hypothesis, we give an effective
description of Norton’s observation.

1. Introduction

Suppose that p denotes a prime number, B = 0.2614 . . . is the Meissel–Mertens

constant, and γ = 0.5772 . . . is the Euler–Mascheroni constant. Mertens famously

proved the following three results [16], which are collectively called Mertens’ theo-

rems: ∑
p≤x

log p

p
= log x+O(1), (1)

∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
, (2)

∏
p≤x

(
1− 1

p

)
=

e−γ

log x

(
1 + o(1)

)
. (3)

Mertens’ theorems have been generalized into several settings. For example, Williams

[24] generalized them for primes in arithmetic progressions, Rosen [19] generalized

them for the number field setting, Arango-Piñeros, Keyes, and the first author [1]

DOI: 10.5281/zenodo.11352846



INTEGERS: 24A (2024) 2

generalized them for prime ideals in a conjugacy class of the Galois group of a

Galois extension of number fields, Yashiro [25] proved them for the Selberg class,

and Lebacque [14] generalized them for smooth, absolutely irreducible, projective

algebraic varieties. Hasegawa, Saito, and Sato [5,6] also generalized Williams’ result

for graph covers.

Any analogue of (2) will involve a constant that can be computed exactly when

the setting is fixed. However, when the setting can vary, the constant could fall

anywhere inside a range, where the upper and lower bounds will depend upon

certain invariants in that setting. For example, suppose that K is a number field of

degree nK ≥ 2 with discriminant ∆K, p are the prime ideals of K, N(p) is the norm

of p, and κK is the residue at s = 1 of the Dedekind zeta-function ζK(s) associated

to K. Garcia and the second author proved in [4] that∑
N(p)≤x

1

N(p)
= log log x+MK +O

(
1

log x

)
,

in which the implied constant in the big-O depends only on nK and ∆K, and

γ + log κK − nK ≤MK ≤ γ + log κK.

In the present paper, we focus on generalisations of Mertens’ theorems for primes

in arithmetic progressions. These have received a lot of recent attention. First,

Williams proved (in [24, Theorem 1]) that if q and ` are integers such that 1 ≤ ` ≤ q
and (`, q) = 1, then there exists a constant C(q, `) such that∏

p≤x
p≡ ` (mod q)

(
1− 1

p

)
=

C(q, `)

(log x)1/ϕ(q)
+O

(
1

(log x)1+1/ϕ(q)

)
, (4)

where the implied constant depends on q, and ϕ denotes the Euler totient func-

tion; this generalizes (3) for primes in arithmetic progressions. Williams did give a

description of the constant C(q, `), but his definition depends on a Dirichlet series

K(s, χ) that is somewhat cumbersome to define. In [9], Languasco and Zaccagnini

gave the following alternate description:

C(q, `)ϕ(q) = e−γ
∏
p

(
1− 1

p

)α(p;q,`)
,

where α(p; q, `) =

{
ϕ(q)− 1 if p ≡ ` (mod q) ,

−1 if p 6≡ ` (mod q) .

(5)

In [11, 13], Languasco and Zaccagnini also demonstrated how to compute C(q, `)

with high accuracy for a broad range of q and ` and gave a simpler proof of (5).

Furthermore, in [10], Languasco and Zaccagnini studied average values of C(q, `),
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wherein they established analogues of theorems from Bombieri–Vinogradov and

Barban–Davenport–Halberstam.

Next, one can use (4) to generalize (2) for primes in arithmetic progressions.

That is, if q and ` are integers such that 1 ≤ ` ≤ q and (`, q) = 1, then∑
p≤x

p≡ ` (mod q)

1

p
=

log log x

ϕ(q)
+M(q, `) +O

(
1

log x

)
, (6)

where the implied constant depends on q and M(q, `) = − logC(q, `) +B(q, `) such

that

B(q, `) =
∑

p≡ ` (mod q)

{
1

p
+ log

(
1− 1

p

)}
.

Once (6) is known, it is straightforward to generalize (1) into the context of primes

in arithmetic progressions using partial summation.

Pomerance proved that M(q, `) is bounded as q and ` vary in [18]. Languasco

and Zaccagnini also explored the constant M(q, `) in [12]. As part of this work,

they used their extensive data to conjecture that M(q, `) ∼ δ`/`, where δ` = 1 if ` is

prime and δ` = 0 otherwise. It turned out that Norton had already proved a lemma

in 1976 (see [17, Lemma 6.3]), which is a more general version of this relationship, so

his contribution was included as an appendix to Languasco and Zaccagnini’s paper.

In particular, a special case of Norton’s lemma tells us that

M(q, `) =
δ`
`

+O

(
log q

ϕ(q)

)
, (7)

where the implied constant in (7) was not specified or described. Note that we will

see ϕ(q) ≥ √q for q > 3 such that q 6= 6 in Lemma 2.5. It follows that (7) can be

re-written for these q as

M(q, `) =
δ`
`

+O

(
log q
√
q

)
, (8)

although the implied constant in (8) remains unspecified.

Our objective in this paper is to describe the implied constant in (8), assuming

the Generalized Riemann Hypothesis (GRH) is true. We need to assume the GRH

because the unconditional knowledge we have on the distribution of primes in arith-

metic progressions is not good enough to match the asymptotic order of the big-O

in (8) without assuming it. The following result is an important milestone toward

satisfying the aforementioned objective.

Theorem 1.1. If q ≥ 3 and the GRH is true, then∣∣∣∣M(q, `)− δ`
`

+
log log q

ϕ(q)

∣∣∣∣ < τ1(q)
ϕ(q)−1

q − 1
+ τ2(q)

log q
√
q
,
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q τ1(q) τ2(q)
3 3.09030 43.26016
4 2.28503 26.72431
5 1.91644 19.94616
10 1.33451 10.40159
15 1.16498 7.92122
20 1.07966 6.73171
25 1.02669 6.01506
50 0.90930 4.49411
100 0.83445 3.58205

Table 1: Computations of τ1(q), τ2(q) in Theorem 1.1 for a selection of q ≥ 3.

in which

τ1(q) = 2B +
1

log q
+

2

(log q)2
and

τ2(q) =
15 + 84.89

q2/3

8π
+

6 + 15
4π + 3

4πq2/3

log q
+

22.29 + q−2/3

(log q)2
+

20.58

(log q)3
.

It is important to note that τ1(q) and τ2(q) in Theorem 1.1 are decreasing func-

tions in q. To demonstrate this, we have provided a collection of computations in

Table 1. It follows from Theorem 1.1 and these computations that if q ≥ 3 and

the GRH is true, then we can prove the following result (Corollary 1.2), which is

clearly an effective version of (8). If one can consider q in a restricted range, then

the constant in Corollary 1.2 can be refined in a straightforward manner.

Corollary 1.2. If q ≥ 3 and the GRH is true, then∣∣∣∣M(q, `)− δ`
`

∣∣∣∣ ≤ 44.56 log q
√
q

.

We will prove Theorem 1.1 in Section 3 in three important steps. First, in (19),

we will use (5) to prove unconditionally that∣∣∣∣∣M(q, `)− δ`
`

+
log log q

ϕ(q)
−
∑
p>q

{
β(p; q, `)

p
+

1

ϕ(q)
log

(
1− 1

p

)}∣∣∣∣∣ ≤ ϕ(q)−1

(log q)2
, (9)

in which β(p; q, `) = 1 if p ≡ ` (mod q) and β(p; q, `) = 0 otherwise. Second, we

control the sum over primes p > q in (9) using technical lemmas and the explicit

Prime Number Theorems (that depend on the GRH) presented in Section 2.1. Fi-

nally, we will use the lower bounds for ϕ(q) that are presented in Section 2.3 and

computations to deduce Theorem 1.1.
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In Section 2, we state some supporting results and import explicit versions of

the Prime Number Theorem that will be useful later. Our main results, namely

Theorem 1.1 and Corollary 1.2, will be proved in Section 3.

We suppose throughout that O? is big-O notation with implied constant at most

one, ϕ denotes the Euler totient function, γ is the Euler–Mascheroni constant, and

M is the Meissel–Mertens constant. We always reserve q for the modulus of the

arithmetic progression under consideration and p for primes.

Remark. It should be possible to extend the techniques we will present in this

paper to prove an unconditional result. The argument would proceed along similar

lines, but would require explicit and unconditional versions of the Prime Number

Theorem for primes in arithmetic progressions (e.g. [2]) and the Prime Number

Theorem (e.g. [3, 20]). There would be extra (non-trivial) technical challenges to

account for though.

2. Technical Lemmas

In our proof of Theorem 1.1, we will require two technical lemmas which are pre-

sented in Section 2.2. To prove one of these technical lemmas, we need explicit

information about

θ(x) =
∑
p≤x

log p and θ(x; q, `) =
∑
p≤x

p≡ ` (mod q)

log p.

These sums are well-known to be objects of interest in the Prime Number Theorem

and the Prime Number Theorem for primes in arithmetic progressions. To this end,

we present explicit versions of the error in each of these Prime Number Theorems in

Section 2.1. In general, we will assume the Riemann Hypothesis (RH) or Generalised

Riemann Hypothesis (GRH), so that we can get the strongest bounds on M(q, `)

in the end. Finally, we give lower bounds for ϕ(n) in Section 2.3 which will assist

some computations in Section 3.

2.1. Explicit Versions of the Prime Number Theorem

Suppose that K ⊆ L is a Galois extension of number fields such that nL = [L : Q],

∆L is the discriminant of L, p is a prime ideal of K that does not ramify in L, σp
is the Frobenius class of p in L/K, and C is any conjugacy class in G = Gal(L/K).

If K = L, then p corresponds to the primes 2, 3, 5, . . . . Moreover, if K = Q and

L = Q(ωq), where ωq is the qth root of unity, then there are are ϕ(q) conjugacy

classes C and p such that σp = C correspond to primes in an arithmetic progression.
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Denoting the norm of p in K by N(p), it follows that

θC(x) =
∑

N(p)≤x
σp=C

logN(p)

is a broad generalisation of θ(x) and θ(x; q, `).

Assuming that the GRH for Dedekind zeta-functions is true, Grenié and Molteni

proved that for all x ≥ 2, we have∣∣∣∣∣ ∑
N(pr)≤x
σpr=C

logN(p)− #C
#G

x

∣∣∣∣∣
≤ #C

#G
√
x

[(
(log x)2

8π
+ 2

)
nL +

(
log x

2π
+ 2

)
log |∆L|

]
.

(10)

This is an explicit version of the Chebotarëv density theorem. Next, the norm is

multiplicative and N(p) = pk for some unique prime p and 1 ≤ k ≤ nK, so it follows

from [20, Theorem 13] that

0 ≤
∑

N(pr)≤x
σpr=C

logN(p)− θC(x) ≤ nK
∑
pr≤x
r≥2

log p ≤ 1.42620nK
√
x.

Therefore, (10) implies∣∣∣∣∣θC(x)− #C
#G

x

∣∣∣∣∣
≤ #C

#G
√
x

[(
(log x)2

8π
+ 2

)
nL +

(
log x

2π
+ 2

)
log |∆L|

]
+ 1.43nK

√
x.

(11)

The following result describes the special cases of (11) that we will need.

Theorem 2.1. Suppose that the GRH is true. If (`, q) = 1, x ≥ 2, and q ≥ 3, then∣∣∣∣θ(x; q, a)− x

ϕ(q)

∣∣∣∣ < ( (log x)2

8π
+

(
log x

2π
+ 2

)
log q + 3.43

)√
x (12)

and

|θ(x)− x| <
(

(log x)2

8π
+ 3.43

)√
x. (13)

Proof. Insert L = Q(ωq) and K = Q into (11) to retrieve (12). To see this, recall

that nL = #G = ϕ(q), #C = 1, and

∆L = (−1)
ϕ(q)
2 qϕ(q)

∏
p|q

p
−
ϕ(q)
p−1 .

Likewise, insert L = K = Q into (11) to retrieve (13).
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Further to the explicit result for θ(x) that was established in (13), the following

result from Schoenfeld does a better job when x ≥ 599.

Theorem 2.2 (Schoenfeld [22, Theorem 10]). If the RH is true and x ≥ 599, then

|θ(x)− x| ≤
√
x(log x)2

8π
.

Remark. When x is large, improvements over (12) have been obtained in [15,

Corollary 1.1]. We have strived to keep the number of conditions on x to a minimum,

so we favored this form for this paper. Other explicit versions of the Prime Number

Theorem could be applied with only minor variations to what we are presenting

here.

2.2. Technical Lemmas for the Proof of Theorem 1.1

To prove Theorem 1.1, we will require two technical lemmas. The first is given

below.

Lemma 2.3. If x > 1, then∣∣∣∣∣∑
p>x

1

p(p− 1)

∣∣∣∣∣ < 1

x− 1

(
2B +

1

log x
+

2

(log x)2

)
.

Proof. Partial summation tells us∑
p>x

1

p(p− 1)
=
M2(x)

1− x
+

∫ ∞
x

M2(t)

(t− 1)2
dt,

in which

M2(x) =
∑
p≤x

1

p
< u(x) := log log x+B +

1

(log x)2
for x > 1, (14)

using [20, (3.20)]. It follows, using (14) and integration by parts, that∣∣∣∣∣∑
p>x

1

p(p− 1)

∣∣∣∣∣ < u(x)

x− 1
+

∫ ∞
x

log log t

(t− 1)2
dt+

(
B +

1

(log x)2

)∫ ∞
x

dt

(t− 1)2

=
u(x)

x− 1
− log log x

x− 1
+

∫ ∞
x

t−1dt

(t− 1) log t
+

(
B +

1

(log x)2

)∫ ∞
x

dt

(t− 1)2

≤ u(x)− log log x

x− 1
+

(
B +

1

log x
+

1

(log x)2

)∫ ∞
x

dt

(t− 1)2

=
1

x− 1

(
2B +

1

log x
+

2

(log x)2

)
.
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Next, the Prime Number Theorem for primes in arithmetic progression tells us

to expect ∑
p>T

p≡ ` (mod q)

1

p
∼ 1

ϕ(q)

∑
p>T

1

p
for T ≥ 3,

but we will need an effective description of the error in this relationship later. To

this end, we prove the next technical lemma, which relies on three applications of

the explicit Prime Number Theorems that were presented in Section 2.1.

Lemma 2.4. Suppose the GRH is true and set

f1(q) :=
15 + 3

ϕ(q)

8π
, f2(q) :=

6 + 15
4π + 3

4πϕ(q)

log q
, f3(q) :=

22.29

(log q)2
,

f4(q) :=
20.58

(log q)3
, f5(q) :=

3.43 + 1
4π

ϕ(q)(log q)2
, and f6(q) :=

3

4πϕ(q)(log q)3
.

If q ≥ 3, then ∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p

∣∣∣∣∣ ≤ log q
√
q

6∑
i=1

fi(q).

If q ≥ 599, then ∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p

∣∣∣∣∣ ≤ log q
√
q

4∑
i=1

fi(q).

Proof. Suppose that h(t) = 1
t log t . It is clear that h(t) > 0 and h′(t) < 0, so it

follows from Theorem 2.2 that if T ≥ 599, then∑
p>T

1

p
= −θ(T )h(T )−

∫ ∞
T

θ(t)h′(t) dt

= −Th(T )−
∫ ∞
T

th′(t) dt+O?

(
h(T )

√
T (log T )2

8π
−
∫ ∞
T

h′(t)
√
t(log t)2

8π
dt

)

= − 1

log T
−
∫ ∞
T

th′(t) dt+O?
(

log T

8π
√
T

+
log T + 3

4π
√
T

)
= − 1

log T
−
∫ ∞
T

th′(t) dt+O?
((

3

8π
+

3

4π log T

)
log T√
T

)
. (15)



INTEGERS: 24A (2024) 9

Likewise, it follows from (13) in Theorem 2.1 that if T ≥ 3, then∑
p>T

1

p
+ Th(T ) +

∫ ∞
T

th′(t) dt

= O?

(
h(T )

√
T (log T )2

8π
+ 3.43h(T )

√
T −

∫ ∞
T

h′(t)
√
t

(
(log t)2

8π
+ 3.43

)
dt

)

= O?

(
log T + 3.43

log T

8π
√
T

+

(
1 +

1

(log T )2

)
log T + 3

4π
√
T

)

= O?
((

3

8π
+

3

4π log T
+

3.43 + 1
4π

(log T )2
+

3

4π(log T )3

)
log T√
T

)
. (16)

Furthermore, it follows from (12) in Theorem 2.1 that if T ≥ 3, then∑
p>T

p≡` (mod q)

1

p
+
Th(T )

ϕ(q)
+

∫ ∞
T

th′(t)

ϕ(q)
dt

= O?
((

(log T )2

8π
+

(
log T

2π
+ 2

)
log q + 3.43

)√
Th(T )

−
∫ ∞
T

(
(log t)2

8π
+

(
log t

2π
+ 2

)
log q + 3.43

)√
th′(t) dt

)
= O?

((
(log T )2

8π
+

(
log T

2π
+ 2

)
log q + 3.43

)
1√

T log T

+

(
1

4π
+

6.86

(log T )2
+

(
1

π log T
+

4

(log T )2

)
log q

)
log T + 3√

T

)
= O?

(
η1(T ) log T + η2(T ) log q√

T

)
, (17)

in which

η1(T ) =
3

8π
+

3

4π log T
+

10.29

(log T )2
+

20.58

(log T )3
,

η2(T ) =
3

2π
+

6 + 3π−1

log T
+

12

(log T )2
.
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Finally, (15), (16), and (17) tell us that if q ≥ 3 and the GRH is true, then∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p

∣∣∣∣∣

≤



((
3

8π
+

3

4π log q

)
1

ϕ(q)
+ f5(q) + f6(q) + η1(q) + η2(q)

)
log q
√
q

if q ≥ 3,

((
3

8π
+

3

4π log q

)
1

ϕ(q)
+ η1(q) + η2(q)

)
log q
√
q

if q ≥ 599,

and the result follows.

2.3. Lower Bounds for the Euler Totient-Function

For the purpose of our final computations, we will require explicit lower bounds for

ϕ(n), a selection of which are presented in the following lemma.

Lemma 2.5. If n ≥ 3, then

ϕ(n) >


log 2

2

n

log n
if n ≥ 3,

√
n if n 6= 3 and n 6= 6,

n2/3 if n > 30.

Proof. Hatalová and Šalát proved the result for n ≥ 3 in [7]. Vaidya proved the

result for n 6= 3 and n 6= 6 in [23]. Kendall and Osborn proved the result for n > 30

in [8]. These references were found in [21].

3. Proof of Main Results

In this section, we prove the main results of this paper, bringing forward all previ-

ously established notations.
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3.1. Proof of Theorem 1.1

To begin, insert (5) into the definition of M(q, `) in (6) to see that

M(q, `) = − logC(q, `) +B(q, `)

=
γ

ϕ(q)
−
∑
p

α(p; q, `)

ϕ(q)
log

(
1− 1

p

)
+

∑
p≡ ` (mod q)

{
1

p
+ log

(
1− 1

p

)}

=
γ

ϕ(q)
+

∑
p≡ ` (mod q)

{
1

p
+

(
1− ϕ(q)− 1

ϕ(q)

)
log

(
1− 1

p

)}

+
∑

p 6≡ ` (mod q)

1

ϕ(q)
log

(
1− 1

p

)

=
γ

ϕ(q)
+
∑
p

{
β(p; q, `)

p
+

1

ϕ(q)
log

(
1− 1

p

)}
. (18)

Re-write the sum over primes in (18) as∑
p

{
β(p; q, `)

p
+

1

ϕ(q)
log

(
1− 1

p

)}
= A(q) + B(q),

in which

A(q) =
∑
p≤q

{
β(p; q, `)

p
+

1

ϕ(q)
log

(
1− 1

p

)}
,

B(q) =
∑
p>q

{
β(p; q, `)

p
+

1

ϕ(q)
log

(
1− 1

p

)}
.

We will bound A(q) and B(q) in the following lemmas. The result on A(q) is

unconditional, whereas the bound on B(q) depends on the GRH.

Lemma 3.1. If q ≥ 2, then

A(q) =
δ`
`
− γ + log log q

ϕ(q)
+O?

(
ϕ(q)−1

(log q)2

)
.

Proof. Recall that [20, (3.25)-(3.27)] tell us that∣∣∣∣∣∣
∏
p≤q

(
1− 1

p

)
− e−γ

log q

∣∣∣∣∣∣ ≤
{

e−γ

2(log q)3 if q ≥ 285,
e−γ

(log q)3 if q ≥ 2.
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It follows that

A(q) =
∑
p≤q

p≡ ` (mod q)

1

p
+

1

ϕ(q)
log
∏
p≤q

(
1− 1

p

)

=
∑
p≤q

p≡ ` (mod q)

1

p
+

1

ϕ(q)
log

(
e−γ

log q

(
1 +O?

(
1

(log q)2

)))

=
∑
p≤q

p≡ ` (mod q)

1

p
− γ + log log q

ϕ(q)
+

1

ϕ(q)
log

(
1 +O?

(
1

(log q)2

))

=
∑
p≤q

p≡ ` (mod q)

1

p
− γ + log log q

ϕ(q)
+O?

(
ϕ(q)−1

(log q)2

)
.

Moreover, p ≤ q is congruent to ` (mod q) if and only if ` is also prime, so the

result follows naturally.

Lemma 3.2. Assume the GRH and recall the definitions of fi(q) for 1 ≤ i ≤ 6 that

were introduced in Lemma 2.4. If q ≥ 3, then

|B(q)| ≤ τ1(q)
ϕ(q)−1

q − 1
+

log q
√
q

6∑
i=1

fi(q).

If q ≥ 599, then

|B(q)| ≤ τ1(q)
ϕ(q)−1

q − 1
+

log q
√
q

4∑
i=1

fi(q).

Proof. Lemma 2.3 implies that if q ≥ 3 and the GRH is true, then

|B(q)| =

∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p(p− 1)

∣∣∣∣∣
≤

∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p

∣∣∣∣∣+

(
2B +

1

log q
+

2

(log q)2

)
ϕ(q)−1

q − 1

=

∣∣∣∣∣ ∑
p≡ ` (mod q)

p>q

1

p
− 1

ϕ(q)

∑
p>q

1

p

∣∣∣∣∣+ τ1(q)
ϕ(q)−1

q − 1
.

Furthermore, Lemma 2.4 implies the result.
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Insert Lemma 3.1 into (18) to see (unconditionally) that∣∣∣∣M(q, `)− δ`
`

+
log log q

ϕ(q)
− B(q)

∣∣∣∣ ≤ ϕ(q)−1

(log q)2
, (19)

so all that remains to describe M(q, `) is to control the size of the contribution from

B(q); this is an explicit version of (9). To this end, insert Lemma 3.2 into (19) to

see that if q ≥ 3 and the GRH is true, then∣∣∣∣M(q, `)− δ`
`

+
log log q

ϕ(q)

∣∣∣∣ ≤ τ1(q)
ϕ(q)−1

q − 1
+ η(q)

log q
√
q
,

in which η(q) is equal to

15 + 3
ϕ(q)

8π
+

6 + 15
4π + 3

4πϕ(q)

log q
+

22.29 +
4.43+ 1

4π

ϕ(q)

(log q)2
+

20.58 + 3
4πϕ(q)

(log q)3
if q ≥ 3,

15 + 3
ϕ(q)

8π
+

6 + 15
4π + 3

4πϕ(q)

log q
+

22.29 + ϕ(q)−1

(log q)2
+

20.58

(log q)3
if q ≥ 599.

Using the lower bounds for ϕ(q) from Lemma 2.5, we are able to replace any occur-

rence of ϕ(q) with a lower bound that will enable us to replace η(q) with a decreas-

ing function in q. Now, of the bounds in Lemma 2.5, the last is the strongest for

n ≤ 24 924, and the first is stronger otherwise. Therefore, we note that if q ≥ 10 000

and the GRH is true, then

η(q) <
15 + 3

q2/3

8π
+

6 + 15
4π + 3

4πq2/3

log q
+

22.29 + q−2/3

(log q)2
+

20.58

(log q)3
.

Next, computations show that the same upper bound also holds for all q ≥ 210.

Therefore, to capture a bound that holds for all q ≥ 3, we alter the form of this

upper bound and use computations to find that if q ≥ 3 and the GRH is true, then

η(q) <
15 + 84.89

q2/3

8π
+

6 + 15
4π + 3

4πq2/3

log q
+

22.29 + q−2/3

(log q)2
+

20.58

(log q)3
= τ2(q).

To find the constant 84.89, we incremented the original constant 3 by 0.01 until

the constant was large enough to hold computationally for all q ≥ 3. The result

(Theorem 1.1) follows naturally.

3.2. Proof of Corollary 1.2

It follows from Theorem 1.1 and the computations in Table 1 that if q ≥ 3 and the

GRH is true, then∣∣∣∣M(q, `)− δ`
`

∣∣∣∣ < log log q

ϕ(q)
+

3.09030ϕ(q)−1

q − 1
+

43.26016 log q
√
q

.
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It follows that∣∣∣∣M(q, `)− δ`
`

∣∣∣∣ < (43.26016 +

√
q log log q

ϕ(q) log q
+

3.09030
√
q

ϕ(q)(q − 1) log q

)
log q
√
q
. (20)

Alternatively, insert the last bound from Lemma 2.5 into the initial relationship to

see that if q ≥ 31, then∣∣∣∣M(q, `)− δ`
`

∣∣∣∣ < log log q

q2/3
+

3.09030

q2/3(q − 1)
+

43.26016 log q
√
q

=

(
43.26016 +

log log q

q1/6 log q
+

3.09030

q1/6(q − 1) log q

)
log q
√
q

<
43.47979 log q

√
q

,

since the last coefficient of log q/
√
q decreases on q ≥ 9. Finally, using compu-

tations, we can observe that the largest coefficient of log q/
√
q in (20) such that

q ∈ {3, 4, . . . , 30} is 44.55233. The result follows naturally.
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