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Abstract

We study a variant of Erdős’ unit distance problem, concerning dot products be-
tween successive pairs of points chosen from a large finite point set. Specifically,
given a large finite set of n points E, and a sequence of nonzero dot products
(α1, . . . , αk), we give upper and lower bounds on the maximum possible number of
tuples of distinct points (A1, . . . , Ak+1) ∈ Ek+1 satisfying Aj ·Aj+1 = αj for every
1 ≤ j ≤ k.

1. Introduction

In [6], Erdős introduced two popular problems in discrete geometry, the single

distance problem and the distinct distances problem. Given a finite point set in

the plane, the single distance problem asks how often a single distance can occur

between pairs of points, while the distinct distances problem asks how many distinct

distances must be determined by pairs of points. In the decades since these problems

were first posed, they have been studied by many people, with varying degrees of

success. See [5, 9] for surveys of these and related problems. The distinct distances

problem was resolved in 2010 by Guth and Katz in [10]. One popular variant of

this family of problems involves replacing the distance between two points by the

dot product of two points [9, 11, 23].
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In addition to studying the dot products determined by pairs of points chosen

from a set, there has been much interest in studying dot products determined by

larger subsets of points. See [1, 3, 15, 24] for some examples and applications.

In this note, we concern ourselves with chains, which are sequences of points re-

stricted by the dot products between successive pairs. We borrow notation from

related problems on distances in [4, 20]. Specifically, if we fix a k-tuple of real

numbers, (α1, α2, . . . , αk), then a k-chain of that type is a (k + 1)-tuple of points,

(R1, R2, . . . , Rk+1), such that for all j = 1, . . . , k, we have Rj · Rj+1 = αj . For

example, if we fix a triple of real numbers, (α, β, γ), a 3-chain of that type will be a

set of four points, where the dot product of the first two points is α, the dot product

of the middle two points is β, and the dot product of the last two points is γ. We

follow convention and refer to 2-chains as hinges.

We will assume a given k-tuple (α1, α2, . . . , αk) consists of nonzero real numbers,

and that k is a constant much smaller than the number of points n, unless explicitly

stated otherwise. Given a large, finite set of n points, E, and a k-tuple of real

numbers, ~α = (α1, . . . , αk), we use Π~α(E) to denote the set of dot product k-chains

corresponding to ~α occurring in E. To state this precisely, we define

Π~α(E) :=
{

(R1, R2, . . . , Rk+1) ∈ Ek+1 : Ri ·Ri+1 = αi, for i = 1, . . . , k
}
.

Also, if two quantities, X(n) and Y (n), vary with respect to some natural number

parameter, n, then we write X(n) . Y (n) if there exist constants, C and N , both

independent of n, such that for all n > N , we have X(n) ≤ CY (n). If X(n) . Y (n)

and Y (n) . X(n), we write X(n) ≈ Y (n).

1.1. Main Results

In [2], Dan Barker and the third listed author gave the following bound on the

number of hinges (2-chains) in a large finite point set in the plane. They go on to

show that this bound is tight.

Theorem 1. Given a large, finite set E of n points in R2, and a pair of nonzero

real numbers ~α = (α1, α2), we have |Π~α(E)| . n2.

In this note, we continue the work in [2] by offering upper bounds on the number

of times that a k-chain of a given type can occur in any large finite point set. In

what follows, we will always assume that k, the length of the chain, is constant with

respect to n, the total number of points in a given large, finite point set.

Theorem 2. Given any natural number k, a sufficiently large, finite set E of n

points in R2, and a k-tuple of nonzero real numbers ~α = (α1, . . . , αk), we have

|Π~α(E)| . n
2(k+1)

3 .
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The next result gives a lower bound for how many k-chains of a given type we

can construct in R2, generalizing the construction for hinges in [2].

Proposition 1. There exists a set E of n points in R2 and a k-tuple of nonzero

real numbers ~α = (α1, . . . , αk), for which |Π~α(E)| & nd(k+1)/2e.

This result is surprising because the corresponding estimates for chains of dis-

tances appeared to be the same from previous investigations of 1- and 2-chains, but

for higher values of k, their behaviors are very different. In particular, the best

known upper bound on the number of times a single distance (1-chain) can occur is

n
4
3 . The upper bound on the number of times a particular distance hinge (2-chain)

can occur is n2, which is sharp. For dot products, we have the same upper bounds

on 1- and 2-chains. Moreover, both dot product bounds are known to be sharp.

However, the similarities end there. Both upper and lower bounds on the number

of k-chains are different for larger values of k. This is addressed in further detail in

Subsection 3.3. For example, Proposition 1 tells us that we can construct a large

finite set of n points for which there are asymptotically at least n4 occurrences

of a particular dot product 6-chain, but the main result in [20] (Theorem 1.1 in

that paper), implies that asymptotically, there can be no more than n
1079
300 . n3.6

occurrences of any distance 6-chain.

While we have nontrivial upper and lower bounds on the number of dot product k-

chains, we are honestly not confident about what the truth should be. In particular,

while we have matching upper and lower bounds for k = 1 and k = 2, there is a

widening gap for k ≥ 3. As of the time of this writing, we could not get a tensioning

argument to improve the upper bound for higher values of k, inspired by what was

done for distance chains in [8, 20], but we believe that something similar may be

possible. Moreover, in [8], the upper bounds agree with the analogous lower bound

constructions up to subpolynomial factors for infinitely many choices of k ≥ 3. So

we presently believe that the lower bounds are more likely to be tight than the

upper bounds. Note, we have only considered nonzero dot products here, because

of point sets like the one in the following construction.

Remark 1. For any k, there are infinitely many sufficiently large n for which there

exists a set of n points, E for which there are at least 2−k−1nk+1 occurrences of

k-chains of the type (0, . . . , 0), constructed by putting n/2 points on the x-axis and

n/2 points on the y-axis.

1.2. Special Cases

One key feature of the construction in the proof of Proposition 1 is the fact that

dot products can repeat in ways that distances cannot. However, with a restriction

on the types of point sets under consideration, so that this overlap of dot products

is forbidden, we can get much better results by slightly modifying the proof of the
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main two-dimensional result in [8] (Theorem 2 in that paper). We discuss this

further below.

Corollary 1. Given any natural number k, any k-tuple of nonzero real numbers,

(α1, . . . , αk), and any sufficiently large, finite set E of n points in R2, with the

property that no two points of E lie on the same line as the origin, we have that for

any ε > 0,

|Π~α(E)| .


n

k+3
3 if k ≡ 0 (mod 3),

n
k+3
3 +ε if k ≡ 1 (mod 3),

n
k+4
3 if k ≡ 2 (mod 3).

Next, we follow [2] in offering k-chain bounds for sets of points where no line has

many points.

Corollary 2. Given any natural number k, any k-tuple of nonzero real numbers

(α1, . . . , αk), and any sufficiently large, finite set E of n points in R2, with no more

than t points on any line, we have

|Π~α(E)| .


(log2 n)

2k−6
3 t

k−3
3 n

4k+12
9 if k ≡ 0 (mod 3),

(log2 n)
2k−2

3 t
k−1
3 n

4k+8
9 if k ≡ 1 (mod 3),

(log2 n)
2k+2

3 t
k+1
3 n

4k+4
9 if k ≡ 2 (mod 3).

We now introduce s-adaptability, which is used to quantify how well-distributed a

set of points is. This property has been used to study many types of geometric point

configuration problems. Using s-adaptability, results about discrete point sets can

be partially translated to apply to sets with positive Hausdorff dimension. These

latter results have consequences in geometric measure theory. See [4, 12, 13, 14, 16],

for example. A large, finite point set E ⊂ [0, 1]2, is said to be s-adaptable if the

following two conditions hold:

(energy)
1(
n
2

) ∑
P,Q∈E
P 6=Q

|P −Q|−s . 1,

(separation) min{|P −Q| : P,Q ∈ E, P 6= Q} ≥ n− 1
s .

The separation condition from the definition of s-adaptability guarantees that there

will be asymptotically no more than n
1
s points on a line, so we can appeal to

Corollary 2 and get the next result as a corollary.

Corollary 3. Let k be a natural number, ~α be a k-tuple of nonzero real numbers,

(α1, . . . , αk), and E ⊂ [0, 1]2 be a sufficiently large set of n points that is s-adaptable.
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For s ≤ 2, we have

|Π~α(E)| .


(log2 n)

2k−6
3 n

4k+12
9 + k−3

3s if k ≡ 0 (mod 3),

(log2 n)
2k−2

3 n
4k+8

9 + k−1
3s if k ≡ 1 (mod 3),

(log2 n)
2k+2

3 n
4k+4

9 + k+1
3s if k ≡ 2 (mod 3).

We pause to note that no large, finite set of n points in [0, 1]2 can be s-adaptable

for s > 2, without violating the separation condition. To see this, partition the

unit square into a
√
n ×
√
n grid of squares of side-length n−

1
2 . Notice that there

are n such squares, and if points are to be separated by a distance much greater

than n−
1
2 , many of the small squares must be empty, but then there cannot be n

points in total. Moreover, when a set is not s-adaptable for any s ≥ 3
2 , Corollary 3

is outperformed by Theorem 2. So the effective range for Corollary 3 is 3
2 ≤ s ≤ 2.

1.3. Higher Dimensions

Thus far, we have only considered point sets in the plane. Much like in Remark 1,

there are point sets in higher dimensions that have many dot product chains of a

given type. The difference here is that in higher dimensions, we can construct arbi-

trarily long dot product k-chains with nk+1 points that have nonzero dot products,

as opposed to in two dimensions, where we could only do that for zero dot products.

Remark 2. Given a natural number k and any type of dot product k-chain,

(α1, . . . , αk), for any sufficiently large natural number n, we can arrange about

n/(k + 1) points along each of the following lines:

{(x, y, z) : x = 1, y = 0}, {(x, y, z) : x = α1, z = 0},

{(x, y, z) : x = α2/α1, y = 0}, {(x, y, z) : x = α1α3/α2, z = 0}, . . .

and so on, so that the dot product of a point from the jth line and a point from

the (j+1)th line is αj , and alternating the free variable between y and z each time.

This gives us a set of n points with a total of about nk+1 dot product k-chains of

the specified type.

Both Remark 1 and Remark 2 were inspired by the celebrated Lenz construction

in R4 of n/2 points on a unit circle in the first two dimensions and n/2 points

on a circle in the next two dimensions, which will give about n2 point pairs (one

point from each circle) separated by a distance of
√

2. These constructions make it

clear that the study of chains in higher dimensions is trivial unless there are extra

restrictions put on the point sets under consideration. For this reason, we offer the

next results on point sets where we have some extra conditions on how many points

can be on hyperplanes.
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Corollary 4. Given any natural number k, a k-tuple of nonzero real numbers ~α =

(α1, . . . , αk), any sufficiently large natural number n, any set E of n points in Rd,

with no more than r points on any (d − 1)-hyperplane, and no more than t points

on any (d− 2)-hyperplane, and any ε > 0, we have

|Π~α(E)| .


n

k+3
3 r

k−3
3 t2 + n

(4d−3)(k−1)+18d−8
6d−3 +εr

k−3
3 t

2d−2
2d−1 if k ≡ 0 (mod 3),

n
k+2
3 r

k−1
3 t+ n

(4d−3)(k−1)+9d−6
6d−3 +εr

k−1
3 t

d−1
2d−1 if k ≡ 1 (mod 3),

n
k+1
3 t

2k+2
3 + n

(4d−3)(k+1)
6d−3 +εt

(2d−2)(k+1)
6d−3 +ε + n

k+1
3 r

k+1
3 if k ≡ 2 (mod 3).

1.4. Organization of This Paper

We will begin by recalling some of the elementary notions used herein in Section

2. Section 3 follows, beginning with the most simple arguments. Since many of the

arguments have the same basic structure, we omit details in the later proofs.

2. Preliminaries

To keep track of dot products, we introduce some helpful geometric notions.

2.1. The α-Line for A

Let A be a point in R2 with coordinates (a1, a2), and let α 6= 0 be a real number.

A point B in R2 satisfies A · B = α if and only if it lies on the line having the

equation a1x + a2y = α. This line is called the α-line for A, denoted `α(A). Note

that B is on the α-line of A if and only if A is on the α-line of B. We also call the

unique line through a point A and the origin the radial line of A, and note that it

is perpendicular to `α(A) for any α.

Figure 1
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Figure 1 shows the points A and B, neither of which are the origin, and two

positive numbers α and β. The dashed lines are the radial lines of A and B, and

their α-lines are perpendicular to their respective radial lines. The points A and

B have a dot product of α, so A is on `α(B), and B is on `α(A). Notice that for

β 6= α, the points that have dot product β with the point A are on another line,

`β(A) that is parallel to `α(A).

2.2. Basic Tools

The following lemma appears in [2] and will be fundamental to our results. We

include the short proof as it shows the flavor of the arguments to come.

Lemma 1. If A and C are two points in R2 that do not lie on the same radial line,

and α, β ∈ R \ {0}, then there exists exactly one point B ∈ R2 such that

B ·A = α and B · C = β.

Proof. Let `α(A) be the α-line for A and let `β(C) be the β-line for C. Since A and

C do not lie on the same radial line, and `α(A) and `β(C) are perpendicular to the

radial lines of A and C, respectively, they are not parallel to each other and hence

intersect in exactly one point. Therefore, there exists exactly one point B ∈ R2

such that B ·A = α and B · C = β.

The celebrated Szemerédi-Trotter Theorem from [22] will also come into play in

what follows.

Theorem 3. Given a set P of n points and a set L of m lines in the plane, the

number of point-line pairs, such that the point lies on the line is bounded above by

|{(P,L) ∈ P × L : P ∈ L}| .
(
n

2
3m

2
3 + n+m

)
.

3. Proofs

We begin with the following simple lemma, using the Szemerédi-Trotter Theorem

to bound how often a particular dot product can occur in a set of points in the

plane.

Lemma 2. Given a large, finite set E of n points in the plane, no α 6= 0 can be a

dot product determined by pairs of points from E more than n
4
3 times.

Proof. We can ignore the origin, as it has dot product zero with every point, so in

what follows, we will assume that the origin is not in E. For each point R ∈ E,
draw the corresponding α-line, `α(R). So for each R = (r1, r2) ∈ E, we have that

`α(R) can be written in the form r1x+r2y = α. We now show that these are unique.
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Consider any two distinct points A,C ∈ E. In the case that A and C do not

lie on the same radial line, Lemma 1 shows that there exists exactly one point, B,

such that A · B = α = B · C. This means that `α(A) ∩ `α(C) is a single point, so

they must be distinct lines.

Now suppose that A = (a1, a2) and C = (c1, c2) lie on the same radial line,

and that it is not the y-axis. Then a1 and c1 are both nonzero, and there exists a

nonzero λ ∈ R such that

c1 = λa1 and c2 = λa2.

By way of contradiction, suppose that `α(A) = `α(C). Then we would have

a1x+ a2y = α = c1x+ c2y = λa1x+ λa2y,

for all x ∈ R. This implies that a1 = λa1, which in turn tells us that λ = 1. But this

means that A and C somehow share the same first coordinate and lie on the same

radial line. The only radial line on which distinct points share the first coordinate

is the y-axis, but we have assumed that A and C do not lie on the y-axis, so in this

case `α(A) cannot completely coincide with `α(C).

In the case that A and C both lie on the y-axis, we would have that a1 = c1 = 0,

and the definition of `α(A) would tell us 0 ·x+a2y = α, or that we can write `α(A)

as y = (α/a2). Arguing similarly for C, we would see that `α(C) could be written

as y = (α/c2). Putting these together yields

α

a2
= y =

α

c2
.

But this means that c2 = a2. This means that both points have coordinates (0, a2),

meaning that they are the same point, which contradicts the fact that they are

distinct. So again, `α(A) cannot completely coincide with `α(C).

Finally, we apply the Szemerédi-Trotter Theorem. Since each of the n points is

associated to a unique line, we have a set of n lines. Notice that by definition, if

a point P lies on a line `α(Q), for some point Q, then P · Q = α. That is to say,

the number of point pairs for E that determine the dot product α is precisely the

number of incidences of points from E and lines of the form `α(Q), for some Q ∈ E.
Since there are n points and n lines, Theorem 3 tells us that the number of point-

line incidences, and therefore occurrences of the dot product α, is asymptotically

bounded above by (n · n)
2
3 + n+ n ≈ n 4

3 , as claimed.

We pause here to remark that Lemma 2 is tight. This can be seen by using

any set of n points and n lines that exhibits sharpness for the Szemerédi-Trotter

Theorem. The basic idea is to use the set of lines as α-lines for another set of

points. The union of these two point sets will have size no more than 2n, and have

n occurrences of the dot product α. See Subsection 2.2.1 of [17], by Alex Iosevich

and the third listed author for an explicit construction.
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3.1. Proof of Theorem 2

Proof. Let E ⊂ R2 be any set of n points, and consider a given k-chain type

(α1, . . . , αk). Our aim is to bound the number of (k+ 1)-tuples of points in E that

determine these dot products pairwise, that is, the size of Π~α(E), where

Π~α(E) := {(R1, . . . , Rk+1) ∈ Ek+1 : Ri ·Ri+1 = αi, i = 1, . . . , k}.

We break into cases depending on the congruence class of k modulo 3. From there,

each case is broken up into component pieces which we estimate with repeated

applications of Theorem 1 and Lemma 2.

3.1.1. Case 1: k ≡ 2 (mod 3)

First, if k = 2, then we have the desired bound by direct appeal to Theorem 1.

If k > 2, then we just apply it repeatedly. Specifically, there exists a nonnegative

integer j such that k = 3(j−1)+2. Since k+1 = (3(j−1)+2)+1 = 3j, we are dealing

with (3j)-tuples of points. We will break each (3j)-tuple down into j consecutive

triples. Start with (R1, R2, R3). By Theorem 1, we know that there can be no more

than n2 triples of the form (R1, R2, R3) with R1 ·R2 = α1 and R2 ·R3 = α2. We will

ignore any possible relationship between R3 and R4. Appealing to Theorem 1 again,

there can be no more than n2 triples of the form (R4, R5, R6) with R4 · R5 = α4

and R5 · R6 = α5. We continue in this fashion to bound the number of triples of

each subsequent type. In so doing, we get a bound on the set

Π′~α(E) = {(R1, . . . , Rk+1) ∈ Ek+1 : Ri ·Ri+1 = αi, i = 1, 2, 4, 5, . . . , k, 36 |i}.

Namely, we can see that |Π′~α(E)| . (n2)j , because for each of the j triples, we get a

bound of n2. Notice that Π~α(E) ⊂ Π′~α(E), so we get |Π~α(E)| ≤ |Π′~α(E)| . (n2)j =

n
2(k+1)

3 .

3.1.2. Case 2: k ≡ 1 (mod 3)

In this case, there exists a nonnegative integer j such that k = 3j + 1. So we can

write k+1 = 3j+2. This means that we are looking at j triples of points, followed by

a pair of points. We can handle the j triples by Case 1, and the final pair of points

separately. That is to say, since k−2 ≡ 2 (mod 3), we can define ~β = (α1, . . . , αk−2)

and get that the number of (k − 2)-chains will be bounded above by

|Π~β(E)| .
(
n2
)j

= n
2(k−1)

3 .

Now, we will ignore the relationship between Rk−1 and Rk, and use Lemma 2 to

bound the number of point pairs (Rk, Rk+1) such that Rk ·Rk+1 = αk by n
4
3 . That

is to say, |Π(αk)(E)| . n
4
3 . Putting these together, we get

|Π~α(E)| ≤ |Π~β(E)| · |Π(αk)(E)| . n
2(k−1)

3 · n 4
3 = n

2(k+1)
3 .
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3.1.3. Case 3: k ≡ 0 (mod 3)

In this case, there exists a nonnegative integer j such that k = 3j. Therefore we can

write k+ 1 = 3(j − 1) + 2 + 2. So we have (j − 1) triples, followed by two pairs. So,

similar to the previous case, we will deal with the (j − 1) triples using Theorem 1,

then apply Lemma 2 twice. Specifically, we set ~γ = (α1, . . . , αk−4) and estimate

|Πα(E)| ≤ |Πγ(E)| · |Π(αk−2)(E)| · |Π(αk)(E)| . n
2(k−3)

3 · n 4
3 · n 4

3 = n
2(k+1)

3 .

It is worth pointing out that in Case 1, if k is also congruent to 5 modulo 6, we

can get the same bounds by breaking up every sextuple into three pairs and using

Lemma 2, instead of breaking them into two triples and using Theorem 1.

3.2. Proof of Proposition 1

We will work inductively using a process similar to the proof of Theorem 2 of [2].

Given a natural number k ≥ 2, we will select a k-tuple of dot products (α1, . . . , αk)

and construct a set of points that exhibits many k-chains of that type. We note

that for this construction, we will have the restriction that α2j = α2j−1 for all

j = 1, . . . , bk/2c.

Proof. Select a point (1, 1) and call it R2. Now choose some nonzero α1 ∈ R. Place

n − k points on the α1-line `α1
(R2). We now set α2 = α1. Now we have on the

order of n choices for each of the points R1 and R3 so that R1 · R2 = α1 and

R2 ·R3 = α2 = α1. Thus, the bound holds for k = 2.

Now select the point (2, 2), and call it R4. Let α3 be the unique nonzero dot

product so that `α1
(R2) and `α3

(R4) are coincident. As before, we now have on the

order of n choices for R5 so that R3 ·R4 = α3 and R4 ·R5 = α4 = α3.

Next, if necessary, we select the point (3, 3) and call it R6. Let α5 be the unique

nonzero dot product so that `α3(R4) and `α5(R6) are coincident. Let m = dk/2e.
We continue to repeat this process until we have selected the point (m,m) to be

Rk, if k is even, or Rk+1, if k is odd. Now, each of the even indexed points Rj are

fixed, but the odd indexed points each have on the order of n choices. Since there

are m odd indices, we have a total on the order of nm occurrences of the k-chain of

type (α1, α1, α2, α2, . . . , αm), as claimed.

The idea behind this construction is actually a bit more flexible than written in

the proof. The basic idea is to put dk/2e points on the same radial line, and to

evenly distribute the rest of them on a family of about bk/2c lines perpendicular to

the original line. In the construction given above, we put this family of lines all on

one line, which restricts the possible values of dot products, αj , slightly more than

is necessary.
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=

Figure 2

Figure 2 show a set of 20 points that has 63 occurrences of a dot product 4-chain

of the type (α1, α2, α3, α4). To see this, notice that all of the points X1–X6 are on

the line `α1(A), so any of them could be a first point in the chain. The point A will

be the second point, then any of the points Y1–Y6 could be the third point, B must

be the fixed fourth point, and any of the points Z1–Z6 could be the fifth point.

3.3. Proof of Corollary 1

Given distinct points P and Q, the circle of radius α centered at P can intersect

the circle of radius β centered at Q in at most two points. So the number of points

that are of distance α to P and distance β to Q is at most two. However, the

corresponding property does not necessarily hold for dot products. Namely, there

exist distinct points P and Q with infinitely many points that are of dot product α

to P and β to Q, even with α, β 6= 0. This happens when P and Q lie on the same

radial line, as the next lemma shows.

Lemma 3. If two points, P and Q, have `α(P ) = `β(Q), then P and Q lie on the

same radial line.

Proof. Notice that if P = (p1, p2) and Q = (q1, q2) are the same point, the conclu-

sion is trivially true. So we now assume that P 6= Q. Let `α(P ) have the equation

y = mx + b. For any x ∈ R, we must have that p1x + p2y = α. Solving this for y

yields that

y = −p1
p2
x+

α

p2
.
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So we can see that m = −p1p2 and b = α
p2
. But `β(Q) is the same line, with the same

equation, so we can similarly argue that m = − q1q2 and b = β
q2
. Comparing the two

expressions for m gives us

−p1
p2

= m = −q1
q2
,

which implies that
p2
p1

=
q2
q1
. (1)

Notice that P lies on a line through the origin with slope p2
p1
, and Q lies on a line

through the origin with slope q2
q1
. But Equation (1) says that these are the same

line through the origin.

We now state the main two-dimensional estimate in [8], by Frankl and Kupavskii,

which is Theorem 2 in that paper (an improvement on similar estimates from [20]).

We refer to a distance k-chain as a k-chain defined by distances instead of dot

products. Since distances between distinct points are strictly positive, we only

concern ourselves with αj > 0 when dealing with distances. Let u2(n) denote the

maximum number of pairs of points separated by exactly a unit distance in any set

of n points in the plane. We now introduce notation for distance k-chains similar

to Π~α(E) for dot product k-chains, except with the Euclidean distance |P −Q|.

∆~α(E) :=
{

(R1, R2, . . . , Rk+1) ∈ Ek+1 : |Ri −Ri+1| = αi, for i = 1, . . . , k
}
.

Theorem 4. [Theorem 2 in [8]] Given a natural number k, a k-tuple of positive

real numbers (α1, . . . , αk), and a large, finite set E of n points in R2, we have that

for any ε > 0,

|∆~α(E)| .


n

k+3
3 if k ≡ 0 (mod 3),

n
k−1
3 +εu2(n) if k ≡ 1 (mod 3),

n
k+4
3 if k ≡ 2 (mod 3).

The key to the proof of Theorem 4 is a bound on incidences between points and

circles, and it heavily relies on the fact that for distinct points P and Q, the circle

of radius α centered at P and the circle of radius β centered at Q can intersect in

at most two points. In order to follow the proof through for dot product k-chains,

we would need to replace the circles that come from distances with lines that come

from dot products. Now, in general, we would not have the guarantee that `α(P )

and `β(Q) intersect in a small number of points. However, with the additional

hypothesis that no two points lie on the same radial line, we are guaranteed by

Lemma 3 that `α(P ) and `β(Q) intersect in at most one point, and we can follow

the proof through in the cases that k ≡ 0, 2 (mod 3), replacing circles with lines.

To handle the case that k ≡ 1 (mod 3), we notice that by applying Lemma 2 for

the maximum number of occurrences of a single dot product, we can replace u2(n)

with n
4
3 .
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3.4. Proof of Corollary 2

The following result is a rephrasing of what is proved in [2] (a direct corollary of

the proof of Theorem 2 that paper). It says that if we have some bounds on the

number of points on a line, we can get better hinge bounds than the general case,

as in Lemma 1.

Theorem 5. [Theorem 2 in [2]] Given a large, finite set E of n points in R2, with

no more than t points on any line, and nonzero real numbers α1 and α2, we have

|Π(α1,α2)(E)| . (log2 n)
2
tn

4
3 .

To prove Corollary 2, we repeat the proof of Theorem 2, but use Theorem 5

in place of Lemma 1. As before, we separate into three cases, depending on the

congruence classes of k modulo 3. Here we merely note the necessary modifications

of each case of the proof of Theorem 2.

3.4.1. Case 1: k ≡ 2 (mod 3)

Find j so that k + 1 = 3j, and apply Theorem 5 j times to get an upper bound of

|Π~α(E)| .
(

(log2 n)
2
tn

4
3

)j
≈ (log2 n)

2k+2
3 t

k+1
3 n

4k+4
9 .

3.4.2. Case 2: k ≡ 1 (mod 3)

Set j so that k + 1 = 3j + 2. We apply Theorem 5 j times and Lemma 2 once to

get an upper bound of

|Π~α(E)| .
(

(log2 n)
2
tn

4
3

)j
· n 4

3 ≈ (log2 n)
2k−2

3 t
k−1
3 n

4k+8
9 .

3.4.3. Case 3: k ≡ 0 (mod 3)

Fix j so that k + 1 = 3(j − 1) + 2 + 2. We apply Theorem 5 (j − 1) times and

Lemma 2 twice to get an upper bound of

|Π~α(E)| .
(

(log2 n)
2
tn

4
3

)(j−1)
· n 4

3 · n 4
3 ≈ (log2 n)

2k−6
3 t

k−3
3 n

4k+12
9 .

3.5. Proof of Corollary 4

In order to prove Corollary 4, we mimic the proof of Corollary 2, but appeal to

higher dimensional incidence theorems. As the construction in Remark 2 shows, we

have no hope to prove nontrivial estimates in higher dimensions in general, so we

restrict ourselves to the case of sets where we have some control on the distribution

of points. To this end, we introduce two estimates. The first is due to Ben Lund,

in [18].
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Theorem 6. [Lund, in [18]] Given a large, finite set E of n points in Rd, with no

more than r points on any (d − 1)-hyperplane, and no more than t points on any

(d− 2)-hyperplane, a pair of nonzero real numbers (α1, α2), and any ε > 0, we have

|Π(α1,α2)(E)| . nt2 + n
4d−3
2d−1+εt

2d−2
2d−1+ε + nr.

This bound is an application of the following result, due to Lund, Sheffer, and

de Zeeuw, from [19], but is based on the work of Fox, Pach, Suk, Sheffer, and Zahl,

from [7].

Theorem 7. [Lund, Sheffer, and de Zeeuw, from [19]] Given a large, finite set P
of n points and a set H of m (d− 1)-hyperplanes in Rd, with no more than t points

on any pair of hyperplanes, and any ε > 0, the maximum number of incidences of

points and hyperplanes is no more than

|{(P,H) ∈ P ×H : P ∈ H}| . mt+m
2(d−1)
2d−1 +εn

d
2d−1 t

d−1
2d−1 + n.

Though they are defined slightly differently in the last two results, for our pur-

poses, both references to the quantity t will coincide. Now we are ready to proceed.

As before, we separate into three cases, depending on the congruence classes of k

modulo 3. Again, we merely note the necessary modifications of each case of the

proof of Theorem 2.

3.5.1. Case 1: k ≡ 2 (mod 3)

Find j so that k + 1 = 3j, and apply Theorem 6 j times, setting ε′ = ε
3

k+1 . This

yields an upper bound of

|Π~α(E)| .
(
nt2 + n

4d−3
2d−1+ε

′
t
2d−2
2d−1+ε

′
+ nr

)j
≈ n

k+1
3 t

2k+2
3 + n

(4d−3)(k+1)
6d−3 +εt

(2d−2)(k+1)
6d−3 +ε + n

k+1
3 r

k+1
3 .

3.5.2. Case 2: k ≡ 1 (mod 3)

Set j so that k+1 = 3j+2. We apply Theorem 6 j times, each time with ε′ = ε
3

k−1 .

We also apply Lemma 7, with m = n and ε′′ = ε− ε′, since each point generates a

unique hyperplane, akin to the α-lines before. Notice that by definition, t ≤ r. This

yields an upper bound of

|Π~α(E)| .
(
nt2 + n

4d−3
2d−1+ε

′
t
2d−2
2d−1+ε

′
+ nr

)j
·
(
nt+ n

2(d−1)
2d−1 +ε′′n

d
2d−1 t

d−1
2d−1 + n

)
≈ n

k+2
3 r

k−1
3 t+ n

(4d−3)(k−1)+9d−6
6d−3 +εr

k−1
3 t

d−1
2d−1 ,

where we have omitted some cross terms, as they will always be dominated by terms

present in the final expression given.
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3.5.3. Case 3: k ≡ 0 (mod 3)

Fix j so that k+1 = 3(j−1)+2+2. Similarly to the previous case, we apply Theorem

6 (j−1) times and Lemma 7 twice, as in the previous case, with appropriate values

of ε′, ε′′,m, r, and t, to get an upper bound of

|Π~α(E)| .
(
nt2 + n

4d−3
2d−1+ε

′
t
2d−2
2d−1+ε

′
+ nr

)j−1
·
(
nt+ n

2(d−1)
2d−1 +ε′′n

d
2d−1 t

d−1
2d−1 + n

)2
≈ n

k+3
3 r

k−3
3 t2 + n

(4d−3)(k−1)+18d−8
6d−3 +εr

k−3
3 t

2d−2
2d−1 ,

where we have again omitted some cross terms.
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[10] L. Guth and N. H. Katz, On the Erdős distinct distance problem in the plane, Ann. of Math.,
181 (1) (2015), 155–190.

[11] B. Hanson, O. Roche-Newton, and S. Senger, Convexity, superquadratic growth, and dot
products, J. Lond. Math. Soc., (2023).

[12] A. Iosevich, H. Jorati, and I.  Laba, Geometric incidence theorems via Fourier analysis, Trans.
Amer. Math. Soc. 361 (2009) 6595–6611.

[13] A. Iosevich, M. Mourgoglou, and S. Senger, On sets of directions and angles determined by
subsets of Rd, J. Anal. Math., 116 (1) (2012), 355–369.

[14] A. Iosevich, M. Rudnev, and I. Uriarte-Tuero, Theory of dimension for large discrete sets and
applications, Math. Model. Nat. Phenom. 9 (5) (2014), 148–169.



INTEGERS: 24A (2024) 16

[15] A. Iosevich and S. Senger, Orthogonal systems in vector spaces over finite fields, Electron. J.
of Combin., 15 (December 2008).

[16] A. Iosevich and S. Senger, Sharpness of the Falconer d+1
2

estimate, Ann. Fenn. Math. 41
(2016), 713–720.

[17] A. Iosevich and S. Senger, Falconer-type estimates for dot products, Bull. Hellenic Math.
Soc. 64 (2020), 98–110.

[18] B. Lund, Incidences and pairs of dot products, preprint arXiv:1509.01072.

[19] B. Lund, A. Sheffer, and F. de Zeeuw, Bisector energy and few distinct distances, Discrete
Comput. Geom. 56 (337) (2016).

[20] E. Palsson, A. Scheffer, and S. Senger, On the number of discrete chains, Proc. Amer. Math.
Soc. 149 (12) (2021), 5347–5358.
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